Wigner–Yanase skew information and quantum phase transition in one-dimensional quantum spin-1/2 chains

被引:2
作者
Shuguo Lei
Peiqing Tong
机构
[1] Nanjing Normal University,Department of Physics and Institute of Theoretical Physics
[2] Nanjing Normal University,Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems
[3] Nanjing Tech University,College of Science
来源
Quantum Information Processing | 2016年 / 15卷
关键词
Wigner–Yanase skew information; Quantum phase transitions; Critical spin systems;
D O I
暂无
中图分类号
学科分类号
摘要
The quantum coherence based on Wigner–Yanase skew information and its relations with quantum phase transitions (QPTs) in one-dimensional quantum spin-1/2 chains are studied. Different from those at the critical point (CP) of the Ising transition in the transverse-field XY chain, the single-spin quantum coherence and the two-spin local σz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^z$$\end{document} quantum coherence are extremal at the CP of the anisotropy transition, and the first-order derivatives of the two-spin local σx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^x$$\end{document} and σy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^y$$\end{document} quantum coherence have logarithmic divergence with the chain size. For the QPT between the gapped and gapless phases in the chain with three-spin interactions, however, no finite-size scaling behavior of the derivatives of quantum coherence is found.
引用
收藏
页码:1811 / 1825
页数:14
相关论文
共 70 条
  • [1] Girolami D(2014)Observable measure of quantum coherence in finite dimensional systems Phys. Rev. Lett. 113 170401-468
  • [2] Streltsov A(2015)Measuring quantum coherence with entanglement Phys. Rev. Lett. 115 020403-undefined
  • [3] Singh U(2009)Quantum entanglement Rev. Mod. Phys. 81 865-undefined
  • [4] Dhar HS(2008)Entanglement in many-body systems Rev. Mod. Phys. 80 517-undefined
  • [5] Bera MN(2001)Quantum discord: a measure of the quantumness of correlations Phys. Rev. Lett. 88 017901-undefined
  • [6] Adesso G(2003)Decoherence, einselection, and the quantum origins of the classical Rev. Mod. Phys. 75 715-undefined
  • [7] Horodecki R(2001)Classical, quantum and total correlations J. Phys. A: Math. Gen. 34 6899-undefined
  • [8] Horodecki P(2003)Classical correlations and entanglement in quantum measurements Phys. Rev. Lett. 90 050401-undefined
  • [9] Horodecki M(2014)Quantifying coherence Phys. Rev. Lett. 113 140401-undefined
  • [10] Horodecki K(1963)Information contents of distributions Proc. Natl. Acad. Sci. USA 49 910-undefined