Optimal Control for the Degenerate Elliptic Logistic Equation

被引:0
|
作者
机构
[1] Departamento Ecuaciones Diferenciales y Análisis Numérico,
[2] Facultad de Matemáticas,undefined
[3] C/ Tarfia s/n,undefined
[4] C.P. 41012,undefined
[5] Universidad de Sevilla,undefined
[6] Sevilla,undefined
[7] Spain {delgado,undefined
[8] suarez}@numer.us.es,undefined
[9] Departamento Análisis Matemático,undefined
[10] C.P. 18071,undefined
[11] Universidad de Granada,undefined
[12] Granada,undefined
[13] Spain jmontero@goliat.ugr.es Communicated by R. Triggiani,undefined
来源
关键词
Key words. Degenerate logistic equation, Singular eigenvalue problems, Optimal control. AMS Classification. Primary 49J20, 49K20, 92D25, Secondary 35J65.;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the optimal control of harvesting the diffusive degenerate elliptic logistic equation. Under certain assumptions, we prove the existence and uniqueness of an optimal control. Moreover, the optimality system and a characterization of the optimal control are also derived. The sub-supersolution method, the singular eigenvalue problem and differentiability with respect to the positive cone are the techniques used to obtain our results.
引用
收藏
页码:325 / 345
页数:20
相关论文
共 50 条
  • [1] Optimal control for the degenerate elliptic logistic equation
    Delgado, M
    Montero, JA
    Suárez, A
    APPLIED MATHEMATICS AND OPTIMIZATION, 2002, 45 (03): : 325 - 345
  • [2] On optimal boundary control problem for a strongly degenerate elliptic equation
    Durante, Tiziana
    Kupenko, Olha P.
    Manzo, Rosanna
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (01): : 63 - 88
  • [3] On optimal boundary control problem for a strongly degenerate elliptic equation
    Tiziana Durante
    Olha P. Kupenko
    Rosanna Manzo
    Revista Matemática Complutense, 2020, 33 : 63 - 88
  • [4] Optimal Regularity of a Degenerate Elliptic Equation
    Wang, Xiaohuan
    Zhang, Jihui
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (01) : 254 - 268
  • [5] Optimal Regularity of a Degenerate Elliptic Equation
    Xiaohuan Wang
    Jihui Zhang
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 254 - 268
  • [6] Multiplicity result for a degenerate elliptic equation with logistic reaction
    Takeuchi, S
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 173 (01) : 138 - 144
  • [7] Positive solutions of a degenerate elliptic equation with logistic reaction
    Takeuchi, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (02) : 433 - 441
  • [8] On optimal control by coefficients in an elliptic equation
    R. K. Tagiev
    Differential Equations, 2011, 47 : 877 - 886
  • [9] On Optimal Control by Coefficients in an Elliptic Equation
    Tagiev, R. K.
    DIFFERENTIAL EQUATIONS, 2011, 47 (06) : 877 - 886
  • [10] A Degenerate Parabolic Logistic Equation
    Arrieta, Jose M.
    Pardo, Rosa
    Rodriguez-Bernal, Anibal
    ADVANCES IN DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 4 : 3 - 11