New Mathematical Model of Fluid Flow Around Nanofiber in a Periodic Cell

被引:0
|
作者
R. F. Mardanov
S. K. Zaripov
V. F. Sharafutdinov
机构
[1] Kazan (Volga Region) Federal University,
来源
Lobachevskii Journal of Mathematics | 2022年 / 43卷
关键词
nanofiber; slip condition; vorticity; Stokes problem; periodic cell;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2206 / 2221
页数:15
相关论文
共 50 条
  • [1] New Mathematical Model of Fluid Flow Around Nanofiber in a Periodic Cell
    Mardanov, R. F.
    Zaripov, S. K.
    Sharafutdinov, V. F.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (08) : 2206 - 2221
  • [2] New approach to mathematical modelling of flow of ideal fluid around bodies
    Kozlov, S.V.
    Lifanov, I.K.
    Mikhailov, A.A.
    Soviet journal of numerical analysis and mathematical modelling, 1991, 6 (03): : 209 - 222
  • [3] MATHEMATICAL-MODEL OF SEPARATED FLOW OF COMPRESSIBLE FLUID AROUND THE LIFTING SURFACES
    GRASKIN, SS
    NISHT, MI
    DOKLADY AKADEMII NAUK, 1994, 339 (03) : 335 - 341
  • [4] Mathematical model of fluid flow in nanochannels
    Indeitsev D.A.
    Abramyan A.K.
    Bessonov N.M.
    Mirantsev L.V.
    International Journal of Nanomechanics Science and Technology, 2010, 1 (02): : 151 - 168
  • [5] The mathematical model of compressible fluid flow
    Leonavičiene, T.
    Pileckas, K.
    Mathematical Modelling and Analysis, 2002, 7 (01) : 117 - 126
  • [6] Mathematical Model of the Flow in a Nanofiber/Microfiber Mixed Aerosol Filter
    Panina, Elvina
    Mardanov, Renat
    Zaripov, Shamil
    MATHEMATICS, 2023, 11 (16)
  • [7] Two-fluid model for blood flow in stenosed arteries under periodic body acceleration: a mathematical model
    Sankar, D. S.
    Hemalatha, K.
    Nagar, Atulya K.
    INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2011, 3 (1-4) : 84 - 92
  • [8] Two-fluid model for blood flow in stenosed arteries under periodic body acceleration: a mathematical model
    D. S. Sankar
    K. Hemalatha
    Atulya K. Nagar
    International Journal of Advances in Engineering Sciences and Applied Mathematics, 2011, 3 (1-4) : 84 - 92
  • [9] Mathematical model for fluid flow in consecutive bifurcations
    Miladi, W.
    Crolet, J. M.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2011, 14 : 163 - 165
  • [10] A MATHEMATICAL MODEL FOR FLOW IN AN ELECTRODIALYSIS CELL
    PNUELI, D
    GROSSMAN, G
    DESALINATION, 1969, 6 (03) : 303 - &