An unsaturated numerical method for the exterior axisymmetric Neumann problem for Laplace’s equation

被引:0
作者
V. N. Belykh
机构
[1] Sobolev Institute of Mathematics,
来源
Siberian Mathematical Journal | 2011年 / 52卷
关键词
Laplace equation; Neumann problem; unsaturated numerical method; exponential convergence;
D O I
暂无
中图分类号
学科分类号
摘要
Basing on the fundamental ideas of Babenko, we construct a fundamentally new, unsaturated, numerical method for solving the axially symmetric exterior Neumann problem for Laplace’s equation. The distinctive feature of this method is the absence of the principal error term enabling us to automatically adjust to every class of smoothness of solutions natural in the problem.
引用
收藏
页码:980 / 994
页数:14
相关论文
共 50 条
[41]   The Integral Equation Method and the Neumann Problem for the Poisson Equation on NTA Domains [J].
Dagmar Medková .
Integral Equations and Operator Theory, 2009, 63 :227-247
[42]   ON THE NUMERICAL SOLUTION OF A CAUCHY PROBLEM FOR THE LAPLACE EQUATION VIA A DIRECT INTEGRAL EQUATION APPROACH [J].
Chapko, Roman ;
Johansson, B. Tomas .
INVERSE PROBLEMS AND IMAGING, 2012, 6 (01) :25-38
[43]   On exact solution of Laplace equation with Dirichlet and Neumann boundary conditions by the homotopy analysis method [J].
Inc, Mustafa .
PHYSICS LETTERS A, 2007, 365 (5-6) :412-415
[44]   Trefftz energy method for solving the Cauchy problem of the Laplace equation [J].
Liu, Chein-Shan ;
Wang, Fajie ;
Gu, Yan .
APPLIED MATHEMATICS LETTERS, 2018, 79 :187-195
[45]   On a method for constructing the Green function of the Dirichlet problem for the Laplace equation [J].
Kalmenov, T. Sh. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2024, 114 (02) :105-113
[46]   Existence And Uniqueness oF An Energy Solution To The Dirichlet Problem For The Laplace Equation In The Exterior oF A Multi-Dimensional Paraboloid [J].
Maz'ya V. ;
Poborchi S. .
Journal of Mathematical Sciences, 2011, 172 (4) :532-554
[47]   An Analog of the Neumann Problem for the 1-Laplace Equation in the Metric Setting: Existence, Boundary Regularity, and Stability [J].
Lahti, Panu ;
Maly, Lukas ;
Shanmugalingam, Nageswari .
ANALYSIS AND GEOMETRY IN METRIC SPACES, 2018, 6 (01) :1-31
[48]   Holmgren's Problem for the Laplace Equation in the Hyperoctant of a Multidimensional Ball [J].
Ergashev, T. G. ;
Abbasova, M. O. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (06) :1303-1312
[49]   THE SPECTRAL DECOMPOSITION OF CAUCHY PROBLEM'S SOLUTION FOR LAPLACE EQUATION [J].
Shaldanbaeva, A. A. ;
Akylbayev, M., I ;
Shaldanbaev, A. Sh ;
Beisebaeva, A. Zh .
NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2018, 5 (321) :75-87
[50]   Holmgren’s Problem for the Laplace Equation in the Hyperoctant of a Multidimensional Ball [J].
T. G. Ergashev ;
M. O. Abbasova .
Lobachevskii Journal of Mathematics, 2022, 43 :1303-1312