An unsaturated numerical method for the exterior axisymmetric Neumann problem for Laplace’s equation

被引:0
作者
V. N. Belykh
机构
[1] Sobolev Institute of Mathematics,
来源
Siberian Mathematical Journal | 2011年 / 52卷
关键词
Laplace equation; Neumann problem; unsaturated numerical method; exponential convergence;
D O I
暂无
中图分类号
学科分类号
摘要
Basing on the fundamental ideas of Babenko, we construct a fundamentally new, unsaturated, numerical method for solving the axially symmetric exterior Neumann problem for Laplace’s equation. The distinctive feature of this method is the absence of the principal error term enabling us to automatically adjust to every class of smoothness of solutions natural in the problem.
引用
收藏
页码:980 / 994
页数:14
相关论文
共 50 条
[31]   Numerical solutions of the Laplace's equation [J].
Al-Khaled, K .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (02) :1271-1283
[32]   Numerical Treatment of a Skew-Derivative Problem for the Laplace Equation in the Exterior of Open Arcs: One-Point Scheme [J].
Kolybasova, V. V. ;
Krutitskii, P. A. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 :912-915
[33]   Uniqueness and convergence of numerical solution of the Cauchy problem for the Laplace equation by a charge simulation method [J].
Ohe, T ;
Ohnaka, K .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2004, 21 (03) :339-359
[34]   A method for solving the Cauchy problem for the Laplace equation [J].
T. Sh. Kal’menov ;
U. A. Iskakova .
Doklady Mathematics, 2008, 78 :874-876
[35]   Uniqueness and convergence of numerical solution of the cauchy problem for the laplace equation by a charge simulation method [J].
Takashi Ohe ;
Kohzaburo Ohnaka .
Japan Journal of Industrial and Applied Mathematics, 2004, 21 :339-359
[36]   LAPLACE'S EQUATION IN THE EXTERIOR OF A CONVEX POLYGON. THE EQUILATERAL TRIANGLE [J].
Charalambopoulos, A. ;
Dassios, G. ;
Fokas, A. S. .
QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (04) :645-660
[37]   A meshless regularized integral equation method for laplace equation in arbitrary interior or exterior plane domains [J].
Liu, Chein-Shan .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2007, 19 (01) :99-109
[38]   Neumann problem for the Helmholtz equation in the exterior of nonclosed surfaces and the case of its explicit solution [J].
P. A. Krutitskii .
Doklady Mathematics, 2012, 86 :805-808
[39]   Numerical solution to the Cauchy problem of the Laplace equation with noisy data [J].
Faculty of Science, Ibaraki University, Mito, Ibaraki, Japan ;
不详 .
Theor. Appl. Mech. Japan, 2009, (481-486)
[40]   Dirichlet or Neumann Problem for Weighted 1-Laplace Equation with Application to Image Denoising [J].
Fu, X. ;
Xiao, J. ;
Xiong, Q. .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (01)