A discrete limit theorem for the Matsumoto zeta-function on the complex plane

被引:0
作者
Kačinskaite R. [1 ]
机构
[1] Vilnius University, 2600 Vilnius
关键词
Matsumoto zeta-function; Probability measure; Weak convergence;
D O I
10.1023/A:1007613613949
中图分类号
学科分类号
摘要
In the paper, a discrete limit theorem in the sense of the weak convergence of probability measures for the Matsumoto zeta-function on the complex plane is proved. © 2001 Plenum Publishing Corporation.
引用
收藏
页码:364 / 378
页数:14
相关论文
共 12 条
  • [1] Hattori T., Matsumoto K., Large deviations of Montgomery type and its application to the theory of zeta-functions, Acta Arith., 71, pp. 79-94, (1995)
  • [2] Kacinskaite R., Discrete limit theorems for trigonometric polynomials, LMD Mokslo Darbai, 3, pp. 44-49, (1999)
  • [3] Laurincikas A., Limit Theorems for the Riemann Zeta-Function, (1996)
  • [4] Laurincikas A., Limit theorems for the Matsumoto zeta-function, J. Théor. Nombres Bordeaux, 8, pp. 143-158, (1996)
  • [5] Laurincikas A., On limit distribution of the Matsumoto zeta-function, Lith. Math. J., 36, 4, pp. 371-387, (1996)
  • [6] Laurincikas A., On limit distribution of the Matsumoto zeta-function, Acta Arith., 79, pp. 31-39, (1997)
  • [7] Laurincikas A., On the Matsumoto zeta-function, Acta Arith., 84, pp. 1-16, (1998)
  • [8] Matsumoto K., Value-distribution of zeta-functions, Lect. Notes Math., 1434, pp. 178-187, (1990)
  • [9] Matsumoto K., On the magnitude of asymptotic probability measures of Dedekind zeta-functions and other Euler products, Acta Arith., 60, pp. 125-147, (1991)
  • [10] Matsumoto K., Asymptotic probability measures of Euler products, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori 1989), pp. 295-313, (1992)