Characteristics of in-out intermittency in delay-coupled FitzHugh–Nagumo oscillators

被引:0
|
作者
Arindam Saha
Ulrike Feudel
机构
[1] Theoretical Physics/Complex Systems,
[2] ICBM,undefined
[3] University of Oldenburg,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We analyze a pair of delay-coupled FitzHugh–Nagumo oscillators exhibiting in-out intermittency as a part of the generating mechanism of extreme events. We study in detail the characteristics of in-out intermittency and identify the invariant subsets involved – a saddle fixed point and a saddle periodic orbit – neither of which are chaotic as in the previously reported cases of in-out intermittency. Based on the analysis of a periodic attractor possessing in-out dynamics, we can characterize the approach to the invariant synchronization manifold and the spiralling out to the saddle periodic orbit with subsequent ejection from the manifold. Due to the striking similarities, this analysis of in-out dynamics also explains in-out intermittency
引用
收藏
页码:1205 / 1219
页数:14
相关论文
共 50 条
  • [21] Spectra of delay-coupled heterogeneous noisy nonlinear oscillators
    Vuellings, Andrea
    Schoell, Eckehard
    Lindner, Benjamin
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (02):
  • [22] Stability and bifurcation analysis in the delay-coupled nonlinear oscillators
    Z. Dadi
    Z. Afsharnezhad
    N. Pariz
    Nonlinear Dynamics, 2012, 70 : 155 - 169
  • [23] Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators
    D. D. Kulminskiy
    V. I. Ponomarenko
    M. D. Prokhorov
    A. E. Hramov
    Nonlinear Dynamics, 2019, 98 : 735 - 748
  • [24] Amplitude and phase effects on the synchronization of delay-coupled oscillators
    D'Huys, O.
    Vicente, R.
    Danckaert, J.
    Fischer, I.
    CHAOS, 2010, 20 (04)
  • [25] Dynamics of a model of two delay-coupled relaxation oscillators
    Ruelas, R. E.
    Rand, R. H.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (08) : 1980 - 1988
  • [26] Isochronal chaos synchronization of delay-coupled optoelectronic oscillators
    Illing, Lucas
    Panda, Cristian D.
    Shareshian, Lauren
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [27] Collective dynamics of delay-coupled limit cycle oscillators
    Abhijit Sen
    Ramana Dodla
    George L. Johnston
    Pramana, 2005, 64 (4) : 465 - 482
  • [28] Travelling waves in arrays of delay-coupled phase oscillators
    Laing, Carlo R.
    CHAOS, 2016, 26 (09)
  • [29] Spectra of delay-coupled heterogeneous noisy nonlinear oscillators
    Andrea Vüllings
    Eckehard Schöll
    Benjamin Lindner
    The European Physical Journal B, 2014, 87
  • [30] Clustering in delay-coupled smooth and relaxational chemical oscillators
    Blaha, Karen
    Lehnert, Judith
    Keane, Andrew
    Dahms, Thomas
    Hoevel, Philipp
    Schoell, Eckehard
    Hudson, John L.
    PHYSICAL REVIEW E, 2013, 88 (06):