Distributed H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\infty }$$\end{document} Consensus Problem for First-Order Multi-Agent Systems with Antagonistic Interactions and Nonconvex Constraints

被引:0
作者
Xinyu Fan
Shujin Chen
Xiaoli Wang
机构
[1] Central South University,School of Automation
关键词
Antagonistic interactions; control; multi-agent systems; nonconvex constrained consensus problem;
D O I
10.1007/s11424-023-1250-9
中图分类号
学科分类号
摘要
This paper investigates the distributed H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\infty }$$\end{document} consensus problem for a first-order multiagent system where both cooperative and antagonistic interactions coexist. In the presence of external disturbances, a distributed control algorithm using local information is addressed and a sufficient condition to get the H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\infty }$$\end{document} control gain is obtained, which make the states of the agents in the same group converge to a common point while the inputs of each agent are constrained in the nonconvex sets. Finally, a numerical simulation is exhibited to illustrate the theory.
引用
收藏
页码:540 / 554
页数:14
相关论文
共 90 条
  • [1] Xiao F(2006)Consensus problems in discrete-time multiagent systems with fixed topology Journal of Mathematical Analysis and Applications 322 587-598
  • [2] Wang L(2010)Necessary and sufficient conditions for solving consensus problems of double-integrator dynamics via sampled control International Journal of Robust and Nonlinear Control 20 1706-1722
  • [3] Wang A(2020)Consensus of second-order hybrid multiagent systems by event-triggered strategy IEEE Transactions on Cybernetics 50 4648-4657
  • [4] Liu H(2017)A PD-like protocol with a time delay to average consensus control for multi-agent systems under an arbitrarily fast switching topology IEEE Transactions on Cybernetics 47 898-907
  • [5] Xie G(2019)Mean square average generalized consensus of multi-agent systems under time-delays and stochastic disturbances Journal of Systems Science & Complexity 32 588-599
  • [6] Wang L(2021)Distributed optimal consensus control for a class of uncertain nonlinear multiagent networks with disturbance rejection using adaptive technique IEEE Transactions on Systems, Man, and Cybernetics: Systems 51 4389-4399
  • [7] Su H(2018)Positive edge consensus of complex networks IEEE Transactions on Systems, Man, and Cybernetics: Systems 48 2242-2250
  • [8] Wang X(2019)Semi-global output consensus for discrete-time switching networked systems subject to input saturation and external disturbances IEEE Transactions on Cybernetics 49 3934-3945
  • [9] Zeng Z(2020)Exact consensus error for multi-agent systems with additive noises Journal of Systems Science and Complexity 33 640-651
  • [10] Wang D(2021)Design of hybrid event-triggered containment controllers for homogeneous and heterogeneous multiagent systems IEEE Transactions on Cybernetics 51 4885-4896