A confidence predictor for logD using conformal regression and a support-vector machine

被引:0
|
作者
Maris Lapins
Staffan Arvidsson
Samuel Lampa
Arvid Berg
Wesley Schaal
Jonathan Alvarsson
Ola Spjuth
机构
[1] Uppsala University,Department of Pharmaceutical Biosciences
来源
关键词
Conformal prediction; Machine learning; QSAR; Support-vector machine; LogD; RDF;
D O I
暂无
中图分类号
学科分类号
摘要
Lipophilicity is a major determinant of ADMET properties and overall suitability of drug candidates. We have developed large-scale models to predict water–octanol distribution coefficient (logD) for chemical compounds, aiding drug discovery projects. Using ACD/logD data for 1.6 million compounds from the ChEMBL database, models are created and evaluated by a support-vector machine with a linear kernel using conformal prediction methodology, outputting prediction intervals at a specified confidence level. The resulting model shows a predictive ability of Q2=0.973\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Q}^{2}=0.973$$\end{document} and with the best performing nonconformity measure having median prediction interval of ±0.39\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm ~0.39$$\end{document} log units at 80% confidence and ±0.60\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm ~0.60$$\end{document} log units at 90% confidence. The model is available as an online service via an OpenAPI interface, a web page with a molecular editor, and we also publish predictive values at 90% confidence level for 91 M PubChem structures in RDF format for download and as an URI resolver service.[graphic not available: see fulltext]
引用
收藏
相关论文
共 50 条
  • [1] A confidence predictor for logD using conformal regression and a support-vector machine
    Lapins, Maris
    Arvidsson, Staffan
    Lampa, Samuel
    Berg, Arvid
    Schaal, Wesley
    Alvarsson, Jonathan
    Spjuth, Ola
    JOURNAL OF CHEMINFORMATICS, 2018, 10
  • [2] POTENTIAL OF SUPPORT-VECTOR REGRESSION FOR FORECASTING STREAM FLOW
    Radzi, Mohd Rashid Bin Mohd
    Shamshirband, Shahaboddin
    Aghabozorgi, Saeed
    Misra, Sanjay
    Akib, Shatirah
    Kiah, Laiha Mat
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2014, 21 (05): : 1017 - 1024
  • [3] A Novel Twin Support-Vector Machine With Pinball Loss
    Xu, Yitian
    Yang, Zhiji
    Pan, Xianli
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (02) : 359 - 370
  • [4] Segmentation of Doppler optical coherence tomography signatures using a support-vector machine
    Singh, Amardeep S. G.
    Schmoll, Tilman
    Leitgeb, Rainer A.
    BIOMEDICAL OPTICS EXPRESS, 2011, 2 (05): : 1328 - 1339
  • [5] Spatial Logistic Regression for Support-Vector Classification of Hyperspectral Imagery
    Liu, Wu
    Fowler, James E.
    Zhao, Chunhui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (03) : 439 - 443
  • [6] An Analysis of Methods for Tuning a Support-Vector Machine for Binary Classification
    Kadyrova N.O.
    Pavlova L.V.
    Biophysics, 2018, 63 (6) : 994 - 1003
  • [7] Confidence bands for least squares support vector machine classifiers: A regression approach
    De Brabanter, K.
    Karsmakers, P.
    De Brabanter, J.
    Suykens, J. A. K.
    De Moor, B.
    PATTERN RECOGNITION, 2012, 45 (06) : 2280 - 2287
  • [8] Face recognition with pose and illumination variations using new SVRDM support-vector machine
    Casasent, D
    Yuan, C
    OPTICAL ENGINEERING, 2004, 43 (08) : 1804 - 1813
  • [9] Efficient face detection by a cascaded support-vector machine expansion
    Romdhani, S
    Torr, P
    Schölkopf, B
    Blake, A
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2051): : 3283 - 3297
  • [10] Test-Cost Optimization in a Scan-Compression Architecture Using Support-Vector Regression
    Li, Zipeng
    Colburn, Jonathon E.
    Pagalone, Vinod
    Narayanun, Kaushik
    Chakrabarty, Krishnendu
    2017 IEEE 35TH VLSI TEST SYMPOSIUM (VTS), 2017,