Ground state and nodal solutions for critical Kirchhoff–Schrödinger–Poisson systems with an asymptotically 3-linear growth nonlinearity

被引:0
作者
Chungen Liu
Hua-Bo Zhang
机构
[1] Guangzhou University,Department of Mathematics
来源
Boundary Value Problems | / 2020卷
关键词
Kirchhoff–Schrödinger–Poisson systems; Nodal solution; Ground state solution; Nehari manifold;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the existence of a least energy nodal solution and a ground state solution, energy doubling property and asymptotic behavior of solutions of the following critical problem: {−(a+b∫R3|∇u|2dx)Δu+V(x)u+λϕu=|u|4u+kf(u),x∈R3,−Δϕ=u2,x∈R3.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} -(a+ b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx)\Delta u+V(x)u+\lambda \phi u= \vert u \vert ^{4}u+ k f(u),&x\in \mathbb{R}^{3}, \\ -\Delta \phi =u^{2},&x\in \mathbb{R}^{3}. \end{cases} $$\end{document} By nodal Nehari manifold method, for each b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b>0$\end{document}, we obtain a least energy nodal solution ub\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{b}$\end{document} and a ground-state solution vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v_{b}$\end{document} to this problem when k≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\gg1$\end{document}, where the nonlinear function f∈C(R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\in C(\mathbb{R},\mathbb{R})$\end{document}. We also give an analysis on the behavior of ub\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{b}$\end{document} as the parameter b→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b\to 0$\end{document}.
引用
收藏
相关论文
共 58 条
[1]  
Benci V.(2002)Solitary waves of nonlinear Klein–Gordon equation coupled with Maxwell equations Rev. Math. Phys. 14 409-420
[2]  
Fortunato D.(1945)On the non-linear vibration problem of the elastic string Q. Appl. Math. 3 157-165
[3]  
Carrier G.F.(2018)Radial ground state sign-changing solutions for a class of asymptotically cubic or super-cubic Schrödinger–Poisson type problems Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 269 3500-3527
[4]  
Chen S.(2015)Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in J. Funct. Anal. 251 582-608
[5]  
Tang X.(2011)Schrödinger–Poisson system with steep potential well J. Differ. Equ. 16 2906-2916
[6]  
Deng Y.(2014)Existence of positive solutions to Schrödinger–Poisson type systems with critical exponent Commun. Contemp. Math. 96 775-794
[7]  
Peng S.(2017)Existence and uniqueness results for Kirchhoff-Schrödinger-Poisson system with general singularity Appl. Anal. 52 544-571
[8]  
Shuai W.(2011)Multi-bump solutions for the nonlinear Schrödinger-Poisson system J. Math. Phys. 4 1529-1538
[9]  
Jiang Y.(2016)Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system Ann. Mat. Pura. Appl. 474 655-674
[10]  
Zhou H.(2019)Least energy radial sign-changing solution for the Schrödinger–Poisson system in J. Math. Anal. Appl. 32 349-368