Strong convergence of an inertial Halpern type algorithm in Banach spaces

被引:0
作者
Sajad Ranjbar
机构
[1] Higher Education Center of Eghlid,Department of Mathematics
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2023年 / 72卷
关键词
Fixed point; Strong convergence; Iterative methods; Halpern iteration; Accretive operator; 47H10; 47H09;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we obtain the strong convergence of the new modified Halpern iteration process xn+1=αnu+(1-αn)TnP(xn+θn(xn-xn-1)),n=1,2,3,…,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x_{n+1} = \alpha _{n}u + (1-\alpha _{n})T_{n}P(x_{n} + \theta _{n}(x_{n} - x_{n-1})), \ \ \ \ \ \ n=1,2,3,\ldots , \end{aligned}$$\end{document}to a common fixed point of {Tn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ T_{n}\}$$\end{document}, where {Tn}n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ T_{n}\}_{n=1}^{\infty }$$\end{document} is a family of nonexpansive mappings on the closed and convex subset C of a Banach space X, P:X⟶C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P: X \longrightarrow C$$\end{document} is a nonexpansive retraction, {αn}⊂[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\alpha _n\} \subset [0, 1]$$\end{document} and {θn}⊂R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\theta _n\}\subset R^+$$\end{document}. Some applications of this result are also presented.
引用
收藏
页码:1561 / 1570
页数:9
相关论文
共 27 条
  • [1] Alvarez F(2001)An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping Set-Valued Anal. 9 3-11
  • [2] Attouch H(2007)Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space Nonlinear Anal. 67 2350-2360
  • [3] Aoyama K(1965)Nonexpansive nonlinear operators in a Banach space Proc. Nat. Acad. Sci. U. S. A. 54 1041-1044
  • [4] Kimura Y(1973)Nonexpansive projections on subsets of Banach spaces Pac. J. Math. 47 341-355
  • [5] Takahashi W(1970)Nonexpansive retracts of Banach spaces Bull. Am. Math. Soc 76 384-386
  • [6] Toyoda M(1974)A characterization of Hilbert space Proc. Am. Math. Soc. 43 173-175
  • [7] Browder FE(1972)The construction and application of contractive retractions in two-dimensional normed linear spaces Indiana Univ. Math. J. 22 473-481
  • [8] Bruck RE(2021)Coercivity conditions, zeros of maximal monotone operators and monotone equilibrium problems J. Nonlinear Var. Anal. 5 519-530
  • [9] Bruck RE(2007)Nonexpansive retracts in Banach spaces Banach Center Publ. 77 161-174
  • [10] Bruck RE(2006)Strong convergence to zeros of accretive operators in Banach spaces J. Nonlinear Convex Anal. 7 71-81