Deformation Quantization with Traces

被引:0
作者
Giovanni Felder
Boris Shoikhet
机构
[1] ETH-Zentrum,Department of Mathematics
[2] IHES,undefined
来源
Letters in Mathematical Physics | 2000年 / 53卷
关键词
deformation quantization; star products; formality;
D O I
暂无
中图分类号
学科分类号
摘要
In this Letter we prove a statement closely related to the cyclic formality conjecture. In particular, we prove that for a constant volume form Ω and a Poisson bivector field π on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}$$ \end{document}d such that divΩπ=0, the Kontsevich star product with the harmonic angle function is cyclic, i.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\int {_{\mathbb{R}^d } }$$ \end{document}(f*g)·h·Ω=∫\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\int {_{\mathbb{R}^d } }$$ \end{document}(g*h)·f·Ω for any three functions f,g,h on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}^d $$ \end{document} (for which the integrals make sense). We also prove a globalization of this theorem in the case of arbitrary Poisson manifolds and an arbitrary volume form, and prove a generalization of the Connes–Flato–Sternheimer conjecture on closed star products in the Poisson case.
引用
收藏
页码:75 / 86
页数:11
相关论文
共 5 条
[1]  
Cattaneo A. S.(2000)A path integral approach to the Kontsevich quantization formula Comm. Math. Phys. 212 591-611
[2]  
Felder G.(1992)Closed star-products and cyclic cohomology Lett. Math. Phys. 24 1-12
[3]  
Connes A.(undefined)undefined undefined undefined undefined-undefined
[4]  
Flato M.(undefined)undefined undefined undefined undefined-undefined
[5]  
Sternheimer D.(undefined)undefined undefined undefined undefined-undefined