Elastic Waves Trapped by a Semi-infinite Strip with Clamped Lateral Sides and a Curved or Broken End

被引:0
作者
S. A. Nazarov
机构
[1] Institute for Problems in Mechanical Engineering,
[2] Russian Academy of Sciences,undefined
来源
Mechanics of Solids | 2023年 / 58卷
关键词
homogeneous isotropic half-strip; curved end face; conditions of traction-free and clamped edges; trapped waves; natural frequencies;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2619 / 2630
页数:11
相关论文
共 20 条
[1]  
Nazarov S. A.(2022)Two-dimensional asymptotic models of thin cylindruical elastic gaskets Differ. Eqations 58 1651-1667
[2]  
Kamotskii I. V.(2000)On eigenfunctions localized in a neighborhood of the lateral surface of a thin domain J. Math. Sci. 101 2941-2974
[3]  
Nazarov S. A.(1967)Boundary problems for elliptic equations in domains with conical or angular points Trans. Moscow Math. Soc. 16 227-313
[4]  
Kondrat’ev V. A.(1999)The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes Russ. Math. Surv. 54 947-1014
[5]  
Nazarov S. A.(2003)Exponentially decreasing solutions of the problem of diffraction by a rigid periodic boundary Math. Notes 73 129-131
[6]  
Kamotskii I. V.(2010)Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold Sib. Math. J. 51 866-878
[7]  
Nazarov S. A.(2007)Scattering solutions in networks of thin fibers: small diameter asymptotics Comm. Math. Phys. 273 533-559
[8]  
Nazarov S. A.(2008)Spectra of graph neighborhoods and scattering Proc. London Math. Soc. 97 718-752
[9]  
Molchanov S.(2020)Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides Math. Izv. 84 1105-1180
[10]  
Vainberg B.(1991)Elastic waves trapped by a homogeneous anisotropic semicylinder Akademie, Berlin 1 2-1670