Parity in partition identities

被引:0
作者
George E. Andrews
机构
[1] The Pennsylvania State University,Department of Mathematics
来源
The Ramanujan Journal | 2010年 / 23卷
关键词
Partitions; Rogers-Ramanujan; Parity index; 11P83; 11P81; 05A19; 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers a variety of parity questions connected with classical partition identities of Euler, Rogers, Ramanujan and Gordon. We begin by restricting the partitions in the Rogers-Ramanujan-Gordon identities to those wherein even parts appear an even number of times. We then take up questions involving sequences of alternating parity in the parts of partitions. This latter study leads to: (1) a bi-basic q-binomial theorem and q-binomial series, (2) a new interpretation of the Rogers-Ramanujan identities, and (3) a new natural interpretation of the fifth-order mock theta functions f0(q) along with a new proof of the Hecke-type series representation.
引用
收藏
页码:45 / 90
页数:45
相关论文
共 15 条
[1]  
Andrews G.E.(1966)An analytic proof of the Rogers-Ramanujan-Gordon identities Am. J. Math. 88 844-846
[2]  
Andrews G.E.(1967)A generalization of the Göllnitz-Gordon partition theorems Proc. Am. Math. Soc. 8 945-952
[3]  
Andrews G.E.(1968)On Quart. J. Math. Oxford Ser. 19 433-447
[4]  
Andrews G.E.(1968)-difference equations for certain well-poised basic hypergeometric series Trans. Am. Math. Soc. 145 205-221
[5]  
Andrews G.E.(1974)A generalization of the classical partition theorems Mem. Am. Math. Soc. 152 86-4085
[6]  
Andrews G.E.(1974)On the general Rogers-Ramanujan theorem Proc. Nat. Acad. Sci. USA 71 4082-74
[7]  
Andrews G.E.(1984)An analytic generalization of the Rogers-Ramanujan identities for odd moduli Adv. Math. 53 55-134
[8]  
Andrews G.E.(1986)Ramanujan’s “lost” notebook. IV: stacks and alternating parity in partitions Trans. Am. Math. Soc. 293 113-1635
[9]  
Corteel S.(2004)The fifth and seventh order mock theta functions Trans. Am. Math. Soc. 356 1623-190
[10]  
Lovejoy J.(1967)Overpartitions J. Reine Angew. Math. 225 154-399