A fixed point method for solving a split feasibility problem in Hilbert spaces

被引:0
作者
Xiaolong Qin
Lin Wang
机构
[1] University of Electronic Science and Technology of China,Institute of Fundamental and Frontier Sciences
[2] Yunnan University of Finance and Economics,College of Statistics and Mathematics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2019年 / 113卷
关键词
Hilbert space; Monotone mapping; Nonexpansive mapping; Split feasibility problem; Weak convergence; 47H05; 47H09; 47N10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a fixed method is introduced and investigated for solving a split feasibility problem. A strong convergence theorem of solutions is established in the framework of infinite dimensional Hilbert spaces. As an application, a split equality problem is also investigated.
引用
收藏
页码:315 / 325
页数:10
相关论文
共 42 条
[1]  
Censor Y(1994)A multiprojection algorithm using Bregman projections in a product space Numer. Algor. 8 221-239
[2]  
Elfving T(2002)Iterative oblique projection onto convex subsets and the split feasibility problem Inverse Probl. 18 441-453
[3]  
Byrne C(2006)A unified approach for inversion problems in intensity modulated radiation therapy Phys. Med. Biol. 51 2353-2365
[4]  
Censor Y(2005)The multiple-sets split feasibility problem and its applications for inverse problems Inverse Probl. 21 2071-2084
[5]  
Bortfeld T(2007)Perturbed projections and subgradient projections for the multiple-sets split feasibility problem J. Math. Anal. Appl. 327 1244-1256
[6]  
Martin B(2017)Split equality fixed point problems for two quasi-asymptotically pseudocontractive mappings J. Nonlinear Funct. Anal. 2017 Article ID 26-2034
[7]  
Trofimov A(2006)A variable Krasonsel’skiǐ–Mann algorithm and multiple-set split feasibility problem Inverse Probl. 22 2021-212
[8]  
Censor Y(2010)Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces Inverse Probl. 26 Article ID 105018-818
[9]  
Elfving T(2017)On a class of split equality fixed point problems in Hilbert spaces J. Nonlinear Var. Anal. 1 201-1092
[10]  
Kopf N(2014)Alternating CQ-algorithm for convex feasibility and split fixed-point problems J. Nonlinear Convex Anal. 15 809-614