Higher-Order Derivative of Self-Intersection Local Time for Fractional Brownian Motion

被引:0
作者
Qian Yu
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
[2] School of Statistics,undefined
[3] East China Normal University,undefined
来源
Journal of Theoretical Probability | 2021年 / 34卷
关键词
Self-intersection local time; Fractional Brownian motion; Hölder continuity; 60G22; 60J55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the existence and Hölder continuity conditions for the k-th-order derivatives of self-intersection local time for d-dimensional fractional Brownian motion, where k=(k1,k2,…,kd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=(k_1,k_2,\ldots , k_d)$$\end{document}. Moreover, we show a limit theorem for the critical case with H=23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=\frac{2}{3}$$\end{document} and d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document}, which was conjectured by Jung and Markowsky [7].
引用
收藏
页码:1749 / 1774
页数:25
相关论文
共 33 条
  • [1] Guo J(2019)Higher-order derivative of intersection local time for two independent fractional Brownian motions J. Theoret. Probab. 32 1190-1201
  • [2] Hu Y(2020)Derivatives of local times for some Gaussian fields J. Math. Anal. Appl. 484 123716-250
  • [3] Xiao Y(2001)Self-intersection local time of fractional Brownian motions-via chaos expansion J. Math. Kyoto Univ. 41 233-983
  • [4] Hong M(2005)Renormalized self-intersection local time for fractional Brownian motion Ann. Probab. 33 948-700
  • [5] Xu F(2017)Asymptotic properties of the derivative of self-intersection local time of fractional Brownian motion Stochastic Process. Appl. 127 669-527
  • [6] Hu Y(2019)Functional limit theorem for the self-intersection local time of the fractional Brownian motion Ann. Inst. H. Poincaré Probab. Statist. 55 480-3868
  • [7] Hu Y(2014)On the Tanaka formula for the derivative of self-intersection local time of fractional Brownian motion Stochastic Process. Appl. 124 3846-312
  • [8] Nualart D(2015)Hölder continuity and occupation-time formulas for fBm self-intersection local time and its derivative J. Theoret. Probab. 28 299-1585
  • [9] Jaramillo A(2008)Renormalization and convergence in law for the derivative of intersection local time in Stochastic Process. Appl. 118 1552-4008
  • [10] Nualart D(2019)Asymptotic behavior for an additive functional of two independent self-similar Gaussian processes Stochastic Process. Appl. 129 3981-46