Structure-preserving image smoothing with semantic cues

被引:0
|
作者
Linggang Chen
Gang Fu
机构
[1] Yunzhangfang Network Technology Co.,
[2] Ltd.,undefined
[3] School of Computer Science,undefined
[4] Wuhan University,undefined
来源
The Visual Computer | 2020年 / 36卷
关键词
Structure-preserving smoothing; Texture; Median filtering;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of image smoothing is to smooth out low-contrast textures while preserving meaningful structures. Although this problem has been studied for decades, it still leaves a lot of space to improve. Recently, learning-based edge detectors have superior performance to traditional manually-designed detectors. Based on the edge detection technique, we present a novel optimization-based image smoothing model combining semantic prior and perform L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0$$\end{document} gradient minimization recursively in our framework to refine the result. Our framework combines the advantage of the state-of-the-art edge detector and the ability of L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0$$\end{document} gradient minimization for structure-preserving image smoothing. Moreover, we employ a large number of real-world images and perform various experiments to evaluate our algorithm. Experimental results show that our algorithm outperforms state-of-the-art algorithms, especially in extracting subjectively-meaningful structures.
引用
收藏
页码:2017 / 2027
页数:10
相关论文
共 50 条
  • [41] Structure-preserving GANs
    Birrell, Jeremiah
    Katsoulakis, Markos A.
    Rey-Bellet, Luc
    Zhu, Wei
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [42] Bayesian Structure-Preserving Image Contrast Enhancement and Its Simplification
    Jen, Tzu-Cheng
    Wang, Sheng-Jyh
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2012, 22 (06) : 831 - 843
  • [43] Noise-resistant structure-preserving multiscale image decomposition
    Jin, Xin
    Wang, Xiaotong
    Xu, Xiaogang
    Xu, Guanlei
    Shao, Chengyong
    OPTICAL ENGINEERING, 2012, 51 (08)
  • [44] Learning Deep Structure-Preserving Image-Text Embeddings
    Wang, Liwei
    Li, Yin
    Lazebnik, Svetlana
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 5005 - 5013
  • [45] Path-Based Analysis for Structure-Preserving Image Filtering
    Xu, Lijuan
    Wang, Fan
    Dempere-Marco, Laura
    Wang, Qi
    Yang, Yan
    Hu, Xiaopeng
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2020, 62 (02) : 253 - 271
  • [46] Structure-preserving image filtering with soft power iteration clustering
    Zeng, Lanling
    Dong, Wenzheng
    Hui, Hongjun
    Wang, Xinyu
    Yang, Yang
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (11) : 7763 - 7777
  • [47] Structure-Preserving Diffusion Model for Unpaired Medical Image Translation
    Wang, Haoshen
    Wang, Xiaodong
    Cui, Zhiming
    MACHINE LEARNING IN MEDICAL IMAGING, PT I, MLMI 2024, 2025, 15241 : 218 - 227
  • [48] Path-Based Analysis for Structure-Preserving Image Filtering
    Lijuan Xu
    Fan Wang
    Laura Dempere-Marco
    Qi Wang
    Yan Yang
    Xiaopeng Hu
    Journal of Mathematical Imaging and Vision, 2020, 62 : 253 - 271
  • [49] Structure-Preserving Texture Smoothing via Scale-Aware Bilateral Total Variation
    He, Lei
    Xie, Yongfang
    Xie, Shiwen
    Chen, Zhipeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (04) : 1493 - 1506
  • [50] How to Obtain Fully Structure-Preserving (Automorphic) Signatures from Structure-Preserving Ones
    Wang, Yuyu
    Zhang, Zongyang
    Matsuda, Takahiro
    Hanaoka, Goichiro
    Tanaka, Keisuke
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2016, PT II, 2016, 10032 : 465 - 495