Structure-preserving image smoothing with semantic cues

被引:0
|
作者
Linggang Chen
Gang Fu
机构
[1] Yunzhangfang Network Technology Co.,
[2] Ltd.,undefined
[3] School of Computer Science,undefined
[4] Wuhan University,undefined
来源
The Visual Computer | 2020年 / 36卷
关键词
Structure-preserving smoothing; Texture; Median filtering;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of image smoothing is to smooth out low-contrast textures while preserving meaningful structures. Although this problem has been studied for decades, it still leaves a lot of space to improve. Recently, learning-based edge detectors have superior performance to traditional manually-designed detectors. Based on the edge detection technique, we present a novel optimization-based image smoothing model combining semantic prior and perform L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0$$\end{document} gradient minimization recursively in our framework to refine the result. Our framework combines the advantage of the state-of-the-art edge detector and the ability of L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0$$\end{document} gradient minimization for structure-preserving image smoothing. Moreover, we employ a large number of real-world images and perform various experiments to evaluate our algorithm. Experimental results show that our algorithm outperforms state-of-the-art algorithms, especially in extracting subjectively-meaningful structures.
引用
收藏
页码:2017 / 2027
页数:10
相关论文
共 50 条
  • [1] Structure-preserving image smoothing with semantic cues
    Chen, Linggang
    Fu, Gang
    VISUAL COMPUTER, 2020, 36 (10-12): : 2017 - 2027
  • [2] Structure-Preserving Image Smoothing via Region Covariances
    Karacan, Levent
    Erdem, Erkut
    Erdem, Aykut
    ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (06):
  • [3] Structure-preserving texture filtering for adaptive image smoothing
    Song, Chengfang
    Xiao, Chunxia
    Li, Xuefei
    Li, Jing
    Sui, Haigang
    JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2018, 45 : 17 - 23
  • [4] Structure-preserving image smoothing via contrastive learning
    Zhu, Dingkun
    Wang, Weiming
    Xue, Xue
    Xie, Haoran
    Cheng, Gary
    Wang, Fu Lee
    VISUAL COMPUTER, 2024, 40 (08): : 5139 - 5153
  • [5] A Generalized Framework for Edge-Preserving and Structure-Preserving Image Smoothing
    Liu, Wei
    Zhang, Pingping
    Liu, Yinjie
    Huang, Xiaolin
    Yang, Jie
    Reid, Ian
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 11620 - 11628
  • [6] A Generalized Framework for Edge-Preserving and Structure-Preserving Image Smoothing
    Liu, Wei
    Zhang, Pingping
    Lei, Yinjie
    Huang, Xiaolin
    Yang, Jie
    Ng, Michael
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (10) : 6631 - 6648
  • [7] Intrinsic Image Decomposition via Structure-Preserving Image Smoothing and Material Recognition
    Nadian-Ghomsheh, Ali
    Hassanian, Yassin
    Navi, Keyvan
    PLOS ONE, 2016, 11 (12):
  • [8] Structure-Preserving Smoothing of Biomedical Images
    Gil, Debora
    Hernandez-Sabate, Aura
    Burnat, Mireia
    Jansen, Steven
    Martinez-Villalta, Jordi
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2009, 5702 : 427 - +
  • [9] Structure-preserving smoothing of biomedical images
    Gil, Debora
    Hernandez-Sabate, Aura
    Brunat, Mireia
    Jansen, Steven
    Martinez-Vilalta, Jordi
    PATTERN RECOGNITION, 2011, 44 (09) : 1842 - 1851
  • [10] Segment Graph Based Image Filtering: Fast Structure-Preserving Smoothing
    Zhang, Feihu
    Dai, Longquan
    Xiang, Shiming
    Zhang, Xiaopeng
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 361 - 369