On the finite basis problem for the monoids of partial extensive injective transformations

被引:0
|
作者
Xun Hu
Yuzhu Chen
Yanfeng Luo
机构
[1] Lanzhou University,School of Mathematics and Statistics
[2] Chongqing Technology and Business University,School of Mathematics and Statistics
[3] Key Laboratory of Applied Mathematics and Complex Systems,undefined
来源
Semigroup Forum | 2015年 / 91卷
关键词
Partial extensive and injective transformation semigroups ; Identities; Finite basis problem; Nonfinitely based ; Hereditarily finitely based;
D O I
暂无
中图分类号
学科分类号
摘要
Let PEIn(POEIn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PEI_n (POEI_n)$$\end{document} be the monoid of all partial (order-preserving) extensive and injective transformations over a chain of order n. We give a sufficient condition under which a semigroup is nonfinitely based and apply this condition to show that the monoid PEI3(POEI3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PEI_3 (POEI_3)$$\end{document} is nonfinitely based. This together with the results of Edmunds and Goldberg gives a complete answer to the finite basis problem for the monoid PEIn(POEIn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PEI_n (POEI_n)$$\end{document}: the monoid PEIn(POEIn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PEI_n (POEI_n)$$\end{document} is nonfinitely based if and only if n⩾3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 3$$\end{document}. Furthermore, it is shown that the monoid PEIn(POEIn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PEI_n (POEI_n)$$\end{document} is hereditarily finitely based if and only if n⩽2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\leqslant 2$$\end{document}.
引用
收藏
页码:524 / 537
页数:13
相关论文
共 50 条
  • [21] Finite basis problem for involution monoids of unitriangular boolean matrices
    Wen Ting Zhang
    Yan Feng Luo
    Nan Wang
    Algebra universalis, 2020, 81
  • [22] Finite basis problem for involution monoids of unitriangular boolean matrices
    Zhang, Wen Ting
    Luo, Yan Feng
    Wang, Nan
    ALGEBRA UNIVERSALIS, 2020, 81 (01)
  • [23] TOPOLOGICAL MONOIDS OF ALMOST MONOTONE INJECTIVE CO-FINITE PARTIAL SELFMAPS OF POSITIVE INTEGERS
    Chuchman, I. Ya
    Gutik, O., V
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2010, 2 (01) : 119 - 132
  • [24] ON MONOIDS OF INJECTIVE PARTIAL SELFMAPS ALMOST EVERYWHERE THE IDENTITY
    Chuchman, Ivan
    Gutik, Oleg
    DEMONSTRATIO MATHEMATICA, 2011, 44 (04) : 699 - 722
  • [25] Hereditarily finitely based monoids of extensive transformations
    Lee, Edmond W. H.
    ALGEBRA UNIVERSALIS, 2009, 61 (01) : 31 - 58
  • [26] Hereditarily finitely based monoids of extensive transformations
    Edmond W. H. Lee
    Algebra universalis, 2009, 61
  • [27] Finite basis problem for the variety generated by all monoids of order five
    Han, Bin Bin
    Zhang, Wen Ting
    Li, Jian Rong
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (01) : 424 - 439
  • [28] INJECTIVE PARTIAL TRANSFORMATIONS WITH INFINITE DEFECTS
    Singha, Boorapa
    Sanwong, Jintana
    Sullivan, Robert Patrick
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (01) : 109 - 126
  • [29] The Intersection Problem for Finite Monoids
    Fleischer, Lukas
    Kufleitner, Manfred
    35TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2018), 2018, 96
  • [30] Enumeration of symplectic and orthogonal injective partial transformations
    Li, Zhenheng
    Li, Zhuo
    Cao, You'an
    DISCRETE MATHEMATICS, 2006, 306 (15) : 1781 - 1787