Given a simple graph G=(V,E)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G = (V, E)$$\end{document} and a constant integer k≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k \ge 2$$\end{document}, the k-path vertex cover problem (PkVC) asks for a minimum subset F⊆V\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F \subseteq V$$\end{document} of vertices such that the induced subgraph G[V-F]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G[V - F]$$\end{document} does not contain any path of order k. When k=2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k = 2$$\end{document}, this turns out to be the classic vertex cover (VC) problem, which admits a 2-Θ1log|V|\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( 2 - {\Theta }\left( \frac{1}{\log |V|}\right) \right)$$\end{document}-approximation. The general PkVC admits a trivial k-approximation; when k=3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k = 3$$\end{document} and k=4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k = 4$$\end{document}, the best known approximation results are a 2-approximation and a 3-approximation, respectively. On d-regular graphs, the approximation ratios can be reduced to min2-5d+3+ϵ,2-(2-o(1))loglogdlogd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\min \left\{ 2 - \frac{5}{d+3} + \epsilon , 2 - \frac{(2 - o(1))\log \log d}{\log d}\right\}$$\end{document} for VC (i.e., P2VC), 2-1d+4d-23d|V|\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2 - \frac{1}{d} + \frac{4d - 2}{3d |V|}$$\end{document} for P3VC, ⌊d/2⌋(2d-2)(⌊d/2⌋+1)(d-2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{\lfloor d/2\rfloor (2d - 2)}{(\lfloor d/2\rfloor + 1) (d - 2)}$$\end{document} for P4VC, and 2d-k+2d-k+2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{2d - k + 2}{d - k + 2}$$\end{document} for PkVC when 1≤k-2<d≤2(k-2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1 \le k-2 < d \le 2(k-2)$$\end{document}. By utilizing an existing algorithm for graph defective coloring, we first present a ⌊d/2⌋(2d-k+2)(⌊d/2⌋+1)(d-k+2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{\lfloor d/2\rfloor (2d - k + 2)}{(\lfloor d/2\rfloor + 1) (d - k + 2)}$$\end{document}-approximation for PkVC on d-regular graphs when 1≤k-2<d\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1 \le k - 2 < d$$\end{document}. This beats all the best known approximation results for PkVC on d-regular graphs for k≥3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k \ge 3$$\end{document}, except for P4VC it ties with the best prior work and in particular they tie at 2 on cubic graphs and 4-regular graphs. We then propose a (1.875+ϵ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(1.875 + \epsilon )$$\end{document}-approximation and a 1.852-approximation for P4VC on cubic graphs and 4-regular graphs, respectively. We also present a better approximation algorithm for P4VC on d-regular bipartite graphs.