Improved Approximation Algorithms for Path Vertex Covers in Regular Graphs

被引:0
作者
An Zhang
Yong Chen
Zhi-Zhong Chen
Guohui Lin
机构
[1] Hangzhou Dianzi University,Department of Mathematics
[2] Tokyo Denki University,Division of Information System Design
[3] University of Alberta,Department of Computing Science
来源
Algorithmica | 2020年 / 82卷
关键词
Path vertex cover; Regular graph; Defective coloring; Maximum independent set; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Given a simple graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document} and a constant integer k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}, the k-path vertex cover problem (PkVC) asks for a minimum subset F⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F \subseteq V$$\end{document} of vertices such that the induced subgraph G[V-F]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[V - F]$$\end{document} does not contain any path of order k. When k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = 2$$\end{document}, this turns out to be the classic vertex cover (VC) problem, which admits a 2-Θ1log|V|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 2 - {\Theta }\left( \frac{1}{\log |V|}\right) \right)$$\end{document}-approximation. The general PkVC admits a trivial k-approximation; when k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = 3$$\end{document} and k=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = 4$$\end{document}, the best known approximation results are a 2-approximation and a 3-approximation, respectively. On d-regular graphs, the approximation ratios can be reduced to min2-5d+3+ϵ,2-(2-o(1))loglogdlogd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \left\{ 2 - \frac{5}{d+3} + \epsilon , 2 - \frac{(2 - o(1))\log \log d}{\log d}\right\}$$\end{document} for VC (i.e., P2VC), 2-1d+4d-23d|V|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 - \frac{1}{d} + \frac{4d - 2}{3d |V|}$$\end{document} for P3VC, ⌊d/2⌋(2d-2)(⌊d/2⌋+1)(d-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\lfloor d/2\rfloor (2d - 2)}{(\lfloor d/2\rfloor + 1) (d - 2)}$$\end{document} for P4VC, and 2d-k+2d-k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{2d - k + 2}{d - k + 2}$$\end{document} for PkVC when 1≤k-2<d≤2(k-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le k-2 < d \le 2(k-2)$$\end{document}. By utilizing an existing algorithm for graph defective coloring, we first present a ⌊d/2⌋(2d-k+2)(⌊d/2⌋+1)(d-k+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\lfloor d/2\rfloor (2d - k + 2)}{(\lfloor d/2\rfloor + 1) (d - k + 2)}$$\end{document}-approximation for PkVC on d-regular graphs when 1≤k-2<d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le k - 2 < d$$\end{document}. This beats all the best known approximation results for PkVC on d-regular graphs for k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 3$$\end{document}, except for P4VC it ties with the best prior work and in particular they tie at 2 on cubic graphs and 4-regular graphs. We then propose a (1.875+ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1.875 + \epsilon )$$\end{document}-approximation and a 1.852-approximation for P4VC on cubic graphs and 4-regular graphs, respectively. We also present a better approximation algorithm for P4VC on d-regular bipartite graphs.
引用
收藏
页码:3041 / 3064
页数:23
相关论文
共 51 条
  • [1] Acharya HB(2012)The Netw. Sci. 1 15-22
  • [2] Choi T(2000)-observer problem in computer networks Theor. Comput. Sci. 237 123-134
  • [3] Bazzi RA(2004)Some APX-completeness results for cubic graphs Ars Combinatoria 72 241-253
  • [4] Gouda MG(2014)On computing the dissociation number and the induced matching number of bipartite graphs Discrete Appl. Math. 177 14-18
  • [5] Alimonti P(2013)On the weighted Discrete Appl. Math. 161 1943-1949
  • [6] Kann V(2011)-path vertex cover problem Discrete Appl. Math. 159 1189-1195
  • [7] Boliac R(1997)On the vertex Proc. SODA 1997 548-557
  • [8] Cameron K(2015)-path cover Discrete Appl. Math. 184 114-121
  • [9] Lozin V(1985)Minimum J. Comb. Theory Series B 39 101-102
  • [10] Brešar B(1988)-path vertex cover Ars Combinatorics 250 159-167