Auxiliary Space Preconditioners for a C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{0}$$\end{document} Finite Element Approximation of Hamilton–Jacobi–Bellman Equations with Cordes Coefficients

被引:0
作者
Guangwei Gao
Shuonan Wu
机构
[1] Peking University,School of Mathematical Sciences
关键词
Non-divergence form; Hamilton–Jacobi–Bellman; Cordes condition; finite element methods; Auxiliary space precondition;
D O I
10.1007/s10915-022-01957-x
中图分类号
学科分类号
摘要
In the past decade, there are many works on the finite element methods for the fully nonlinear Hamilton–Jacobi–Bellman (HJB) equations with Cordes condition. The linearised systems have large condition numbers, which depend not only on the mesh size but also on the parameters in the Cordes condition. This paper is concerned with the design and analysis of auxiliary space preconditioners for the linearised systems of a C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{document} finite element discretization of HJB equations [Calcolo, 58, 2021]. Based on the stable decomposition on the auxiliary spaces, we propose both the additive and multiplicative preconditioners which converge uniformly in the sense that the resulting condition number is independent of both the number of degrees of freedom and the parameter λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} in Cordes condition. Numerical experiments are carried out to illustrate the efficiency of the proposed preconditioners.
引用
收藏
相关论文
共 56 条
[1]  
Smears I(2014)Discontinuous Galerkin finite element approximation of Hamilton–Jacobi–Bellman equations with Cordes coefficients SIAM J. Numer. Anal. 52 993-1016
[2]  
Süli E(2016)Discontinuous Galerkin finite element methods for time-dependent Hamilton–Jacobi–Bellman equations with Cordes coefficients Numer. Math. 133 141-176
[3]  
Smears I(2019)Discrete Miranda-Talenti estimates and applications to linear and nonlinear PDEs J. Comput. Appl. Math. 356 358-376
[4]  
Süli E(2019)Mixed finite element approximation of the Hamilton–Jacobi–Bellman equation with Cordes coefficients SIAM J. Numer. Anal. 57 592-614
[5]  
Neilan M(2021) finite element approximations of linear elliptic equations in non-divergence form and Hamilton-Jacobi-Bellman equations with Cordes coefficients Calcolo 58 1-26
[6]  
Wu M(2015)Discrete and conforming smooth de Rham complexes in three dimensions Math. Comput. 84 2059-2081
[7]  
Gallistl D(2018)Nodal finite element de Rham complexes Numer. Math. 139 411-446
[8]  
Süli E(2013)Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordes coefficients SIAM J. Numer. Anal. 51 2088-2106
[9]  
Wu S(2019)A DGFEM for nondivergence form elliptic equations with Cordes coefficients on curved domains Numerical Methods for Partial Differential Equations 35 1717-1744
[10]  
Neilan M(2021)Unified analysis of discontinuous galerkin and c0-interior penalty finite element methods for Hamilton-Jacobi-Bellman and isaacs equations ESAIM: Mathematical Modelling and Numerical Analysis 55 449-478