Positive solutions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta u+u^p = 0$\end{document} whose singular set is a manifold with boundary

被引:0
作者
S. Fakhi
机构
[1] C.M.P.XII Départment de Mathématique Université Paris 12,
[2] 61,undefined
[3] avenue de Gal de Gaulle,undefined
[4] 94010 Créteil Cedex,undefined
[5] France (e-mail: fakhi@univ-paris12.fr) ,undefined
关键词
Weak Solution; Smooth Boundary; Yamabe Problem; Singular Yamabe Problem;
D O I
10.1007/s00526-002-0165-x
中图分类号
学科分类号
摘要
The aim of this paper is to prove the existence of weak solutions to the equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta u+u^p = 0$\end{document}, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n \geq 4$\end{document}, which are positive in a domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subset \mathbb{R}^n$\end{document} and which are singular along a k-dimensional submanifold with smooth boundary. Here, the exponent p is required to lie in the interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[\frac{n-k}{n-2-k},\frac{n-k+2}{n-2-k})$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1 \leq k < n-2$\end{document} is the dimension of the singular set. In the particular case where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p = \frac{n+2}{n-2}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega = \mathbb{R}^n$\end{document}, solutions correspond to solutions of the singular Yamabe problem.
引用
收藏
页码:179 / 197
页数:18
相关论文
empty
未找到相关数据