The first simultaneous sign change for Fourier coefficients of Hecke–Maass forms

被引:0
|
作者
Moni Kumari
Jyoti Sengupta
机构
[1] Tata Institute of Fundamental Research,School of Mathematics
[2] Vivekananda University,Department of Mathematics
来源
The Ramanujan Journal | 2021年 / 55卷
关键词
Maass forms; Fourier coefficients; Sign changes; Primary 11F41; Secondary 11F30;
D O I
暂无
中图分类号
学科分类号
摘要
Let f and g be two Hecke–Maass cusp forms of weight zero for SL2(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL_2({\mathbb {Z}})$$\end{document} with Laplacian eigenvalues 14+u2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{4}+u^2$$\end{document} and 14+v2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{4}+v^2$$\end{document}, respectively. Then both have real Fourier coefficients say, λf(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _f(n)$$\end{document} and λg(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _g(n)$$\end{document}, and we may normalize f and g so that λf(1)=1=λg(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _f(1)=1=\lambda _g(1)$$\end{document}. In this article, we first prove that the sequence {λf(n)λg(n)}n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\lambda _f(n)\lambda _g(n)\}_{n \in {\mathbb {N}}}$$\end{document} has infinitely many sign changes. Then we derive a bound for the first negative coefficient for the same sequence in terms of the Laplacian eigenvalues of f and g.
引用
收藏
页码:205 / 218
页数:13
相关论文
共 50 条
  • [41] On the exponential sums estimates related to Fourier coefficients of GL3 Hecke-Maaß forms
    Hou, Fei
    AIMS MATHEMATICS, 2023, 8 (04): : 7806 - 7816
  • [42] Mock modular forms with integral Fourier coefficients
    Li, Yingkun
    Schwagenscheidt, Markus
    ADVANCES IN MATHEMATICS, 2022, 399
  • [43] Some remarks on the Fourier coefficients of cusp forms
    Kumar, Balesh
    Mehta, Jay
    Viswanadham, G. K.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (09) : 1935 - 1943
  • [44] Sign changes of Hecke eigenvalue of primitive cusp forms
    Xu, Zhao
    JOURNAL OF NUMBER THEORY, 2017, 172 : 32 - 43
  • [45] ON FOURIER COEFFICIENTS OF MODULAR FORMS
    Cummins, C. J.
    Haghighi, N. S.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (01) : 50 - 62
  • [46] Sign changes in restricted coefficients of Hilbert modular forms
    Agnihotri, Rishabh
    Chakraborty, Kalyan
    Krishnamoorthy, Krishnarjun
    RAMANUJAN JOURNAL, 2022, 59 (04) : 1225 - 1243
  • [47] A note on signs of Fourier coefficients of two cusp forms
    S Banerjee
    Proceedings - Mathematical Sciences, 2018, 128
  • [48] Koecher-Maass series associated to Hermitian modular forms of degree 2 and a characterization of cusp forms by the Hecke bound
    Matthes, Roland
    Mizuno, Yoshinori
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 509 (01)
  • [49] A note on signs of Fourier coefficients of two cusp forms
    Banerjee, S.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (04):
  • [50] On products of Fourier coefficients of cusp forms
    Hofmann, Eric
    Kohnen, Winfried
    FORUM MATHEMATICUM, 2017, 29 (01) : 245 - 250