A supernodal block factorized sparse approximate inverse for non-symmetric linear systems

被引:0
|
作者
Massimiliano Ferronato
Giorgio Pini
机构
[1] University of Padova,Department of ICEA
来源
Numerical Algorithms | 2018年 / 78卷
关键词
Linear systems; Iterative methods; Preconditioning; Parallel computing; 65F08; 65F10; 65Y05; 68W10;
D O I
暂无
中图分类号
学科分类号
摘要
The concept of supernodes, originally developed to accelerate direct solution methods for linear systems, is generalized to block factorized sparse approximate inverse (Block FSAI) preconditioning of non-symmetric linear systems. It is shown that aggregating the unknowns in clusters that are processed together is particularly useful both to reduce the cost for the preconditioner setup and accelerate the convergence of the iterative solver. A set of numerical experiments performed on matrices arising from the meshfree discretization of 2D and 3D potential problems, where a very large number of nodal contacts is usually found, shows that the supernodal Block FSAI preconditioner outperforms the native algorithm and exhibits a much more stable behavior with respect to the variation of the user-specified parameters.
引用
收藏
页码:333 / 354
页数:21
相关论文
共 50 条
  • [1] A supernodal block factorized sparse approximate inverse for non-symmetric linear systems
    Ferronato, Massimiliano
    Pini, Giorgio
    NUMERICAL ALGORITHMS, 2018, 78 (01) : 333 - 354
  • [2] The effect of orderings on sparse approximate inverse preconditioners for non-symmetric problems
    Flórez, E
    García, MD
    González, L
    Montero, G
    ADVANCES IN ENGINEERING SOFTWARE, 2002, 33 (7-10) : 611 - 619
  • [3] Factorized-Sparse-Approximate-Inverse Preconditionings of Linear Systems with Unsymmetric Matrices
    A. Yu. Yeremin
    A. A. Nikishin
    Journal of Mathematical Sciences, 2004, 121 (4) : 2448 - 2457
  • [4] Block approximate inverse preconditioners for sparse nonsymmetric linear systems
    Cerdán, J.
    Faraj, T.
    Malla, N.
    Marin, J.
    Mas, J.
    Electronic Transactions on Numerical Analysis, 2010, 37 : 23 - 40
  • [5] BLOCK APPROXIMATE INVERSE PRECONDITIONERS FOR SPARSE NONSYMMETRIC LINEAR SYSTEMS
    Cerdan, J.
    Faraj, T.
    Malla, N.
    Marin, J.
    Mas, J.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2010, 37 : 23 - 40
  • [6] FULLY VECTORIZABLE BLOCK PRECONDITIONINGS WITH APPROXIMATE INVERSES FOR NON-SYMMETRIC SYSTEMS OF EQUATIONS
    DIAZ, JC
    MACEDO, CG
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 27 (03) : 501 - 522
  • [7] Orderings for factorized sparse approximate inverse preconditioners
    Benzi, M
    Tuma, M
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (05): : 1851 - 1868
  • [8] Generalized block diagonal and block triangular preconditioners for non-symmetric indefinite linear systems
    Li, Xiao-Yan
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (03) : 445 - 458
  • [9] Parallel implementations of FGMRES for solving large, sparse non-symmetric linear systems
    DeVries, Byron
    Iannelli, Joe
    Trefftz, Christian
    O'Hearn, Kurt A.
    Wolffe, Greg
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 491 - 500
  • [10] Parallel method for sparse non-symmetric linear and non-linear systems of equations on a transputer network
    Zilli, G
    SUPERCOMPUTER, 1996, 12 (04): : 4 - 15