Unconditional uniqueness of higher order nonlinear Schrödinger equations

被引:0
作者
Friedrich Klaus
Peer Kunstmann
Nikolaos Pattakos
机构
[1] Karlsruhe Institute of Technology (KIT),Department of Mathematics, Institute for Analysis
来源
Czechoslovak Mathematical Journal | 2021年 / 71卷
关键词
normal form method; modulation space; unconditional uniqueness; higher order nonlinear Schrödinger; 35A01; 35A02; 35D30; 35J30;
D O I
暂无
中图分类号
学科分类号
摘要
We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data u0 ∈ X, where X∈{M2,qs(ℝ),Hσ(T),Hs1(ℝ)+Hs2(T)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \in \{M_{2,q}^s(\mathbb{R}),\,{H^\sigma}(\mathbb{T}),\,{H^{{s_1}}}(\mathbb{R}) + {H^{{s_2}}}(\mathbb{T})\}$$\end{document} and q ∈ [1, 2], s ⩾ 0, or σ ⩾ 0, or s2 ⩾ s1 ⩾ 0. Moreover, if M2,qs(ℝ) ↪ L3(ℝ), or if σ⩾16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \geqslant {1 \over 6}$$\end{document}, or if s1⩾16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s_1} \geqslant {1 \over 6}$$\end{document} and s2>12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s_2} > {1 \over 2}$$\end{document} we how that the Cauchy problem is unconditionally wellposed in X. Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ the normal form reduction via the differentiation by parts technique and build upon our previous work.
引用
收藏
页码:709 / 742
页数:33
相关论文
共 59 条
[1]  
Babin A V(2011)On the regularization mechanism for the periodic Korteweg-de Vries equation Commun. Pure Appl. Math. 64 591-648
[2]  
Ilyin A A(2000)Dispersion estimates for fourth order Schrödinger equations C. R. Acad. Sci., Paris, Sér. I, Math. 330 87-92
[3]  
Titi E S(2007)Unimodular Fourier multipliers for modulation spaces J. Funct. Anal. 246 366-384
[4]  
Ben-Artzi M(2017)Blowup for biharmonic NLS Ann. Scient. Éc. Norm. Supér. (4) 50 503-544
[5]  
Koch H(2019)Knocking out teeth in one-dimensional periodic nonlinear Schrödinger equation SIAM J. Math. Anal. 51 3714-3749
[6]  
Saut J-C(2019)Nonlinear Schrödinger equation, differentiation by parts and modulation spaces J. Evol. Equ. 19 803-843
[7]  
Bényi Á(2021)The global Cauchy problem for the NLS with higher order anisotropic dispersion Glasg. Math. J. 63 45-53
[8]  
Gröchenig K(2018)Ill-posedness for the cubic nonlinear half-wave equation and other fractional NLS on the real line Int. Math. Res. Not. 2018 699-738
[9]  
Okoudjou K(2012)Almost sure well-posedness of the cubic nonlinear Schrödinger equation below Duke Math. J. 161 367-414
[10]  
Rogers L G(2002)Self-focusing with fourth-order dispersion SIAM J. Appl. Math. 62 1437-1462