Long Time, Large Scale Limit of the Wigner Transform for a System of Linear Oscillators in One Dimension

被引:0
作者
Tomasz Komorowski
Łukasz Stȩpień
机构
[1] Institute of Mathematics,
来源
Journal of Statistical Physics | 2012年 / 148卷
关键词
Wigner transform; Interacting harmonic oscillators; Fractional diffusion;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the long time, large scale behavior of the Wigner transform Wϵ(t,x,k) of the wave function corresponding to a discrete wave equation on a 1-d integer lattice, with a weak multiplicative noise. This model has been introduced in Basile et al. in Phys. Rev. Lett. 96 (2006) to describe a system of interacting linear oscillators with a weak noise that conserves locally the kinetic energy and the momentum. The kinetic limit for the Wigner transform has been shown in Basile et al. in Arch. Rat. Mech. 195(1):171–203 (2009). In the present paper we prove that in the unpinned case there exists γ0>0 such that for any γ∈(0,γ0] the weak limit of Wϵ(t/ϵ3/2γ,x/ϵγ,k), as ϵ≪1, satisfies a one dimensional fractional heat equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\partial_{t} W(t,x)=-\hat{c}(-\partial_{x}^{2})^{3/4}W(t,x)$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{c}>0$\end{document}. In the pinned case an analogous result can be claimed for Wϵ(t/ϵ2γ,x/ϵγ,k) but the limit satisfies then the usual heat equation.
引用
收藏
页码:1 / 37
页数:36
相关论文
共 29 条
  • [1] Basile G.(2006)Momentum conserving model with anomalous thermal conductivity in low dimension Physical Review Letters 96 15-44
  • [2] Bernardin C.(2010)Convergence of a kinetic equation to a fractional diffusion equation Markov Process. Relat. Fields 16 171-203
  • [3] Olla S.(2009)Wigner functions and stochastically perturbed lattice dynamics Arch. Ration. Mech. Anal. 195 211-277
  • [4] Basile G.(2008)Quantum diffusion of the random Schrödinger evolution in the scaling limit Acta Math. 200 2270-2300
  • [5] Bovier A.(2009)Limit theorems for additive functionals of a Markov chain Ann. Appl. Probab. 19 948-995
  • [6] Basile G.(2003)Noncommutative Burkholder-Rosenthal inequality Ann. Probab. 31 277-323
  • [7] Olla S.(2006)Diffusion in a weakly random Hamiltonian flow Commun. Math. Phys. 263 93-162
  • [8] Spohn H.(2003)Thermal conduction in classical low-dimensional lattices Phys. Rep. 377 493-525
  • [9] Erdös L.(2003)Universality of anomalous one-dimensional heat conductivity Phys. Rev. E 68 undefined-undefined
  • [10] Salmhofer M.(2007)Kinetic limit for wave propagation in a random medium Arch. Ration. Mech. Anal. 183 undefined-undefined