Half-Arc-Transitive Graphs and the Fano Plane

被引:0
作者
Martin Mačaj
Primož Šparl
机构
[1] Comenius University,Faculty of Education
[2] University of Ljubljana,Institute Andrej Marušič
[3] University of Primorska,undefined
[4] Institute of Mathematics,undefined
[5] Physics and Mechanics,undefined
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
Half-arc-transitive; Fano plane; Heawood graph; Construction;
D O I
暂无
中图分类号
学科分类号
摘要
A subgroup G of the automorphism group of a graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document} acts half-arc-transitively on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document} if the natural actions of G on the vertex-set and edge-set of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document} are both transitive, but the natural action of G on the arc-set of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document} is not transitive. When G=Aut(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G ={\text{Aut}}(\Gamma )$$\end{document} the graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document} is said to be half-arc-transitive. Given a bipartite cubic graph with a certain degree of symmetry two covering constructions that provide infinitely many tetravalent graphs admitting half-arc-transitive groups of automorphisms are introduced. Symmetry properties of constructed graphs are investigated. In the second part of the paper the two constructions are applied to the Heawood graph, the well-known incidence graph of the Fano plane. It is proved that the members of the infinite family resulting from one of the two constructions are all half-arc-transitive, and that the infinite family resulting from the second construction contains a mysterious family of arc-transitive graphs that emerged within the classification of tightly attached half-arc-transitive graphs of valence 4 back in 1998 and 2008.
引用
收藏
页码:987 / 1012
页数:25
相关论文
共 36 条
[1]  
Antončič I(2016)Classification of quartic half-arc-transitive weak metacirculants of girth at most 4 Discrete Math. 339 931-945
[2]  
Šparl P(2009)Consistent cycles in half-arc-transitive graphs Electron. J. Combin. 16 R5-740
[3]  
Boben M(2009)A refined classification of symmetric cubic graphs J. Algebra 322 722-455
[4]  
Miklavič Š(1950)Self-dual configurations and regular graphs Bull. Am. Math. Soc. 56 413-244
[5]  
Potočnik P(2012)Four constructions of highly symmetric graphs J. Graph Theory 71 229-218
[6]  
Conder MDE(1998)Group actions, coverings and lifts of automorphisms Discrete Math. 182 203-947
[7]  
Nedela R(2000)Lifting graph automorphisms by voltage assignments Eur. J. Combin. 21 927-76
[8]  
Coxeter HSM(1998)Half-transitive group actions on finite graphs of valency 4 J. Combin. Theory Ser. B 73 41-205
[9]  
Hill A(1999)Tetravalent graphs admitting half-transitive group actions: alternating cycles J. Combin. Theory Ser. B 75 188-395
[10]  
Wilson S(2008)On quartic half-arc-transitive metacirculants J. Algebr. Combin. 28 365-392