Bounds for weighted Lebesgue functions for exponential weights. II

被引:0
作者
D. G. Kubayi
机构
[1] University of the Witwatersrand Po Wits,The John Knopfmacher Centre For Applicable Analysis and Number Theory Department of Mathematics
来源
Acta Mathematica Hungarica | 2002年 / 97卷
关键词
Lebesgue function; exponential weights; orthogonal polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
In [3] we found estimates for the weighted Lebesgue functions, Δn(x), for a class of exponential weights that includes non-even weights, when the interpolation points are the zeros of orthogonal polynomials. In this paper, we use Szabados" method of adding two extra interpolation points to find better estimates for Lebesgue functions.
引用
收藏
页码:37 / 54
页数:17
相关论文
共 15 条
[1]  
Damelin S. B.(1998)The weighted Lebesgue constant of Lagrange interpolation for non Szegö weights on [−1, 1] Acta Math. Hungar. 83 223-240
[2]  
Damelin S. B.(1998)The Lebesgue function and the Lebesgue constant of Lagrange interpolation for Erdős weights J. Appr. Theory 94 235-262
[3]  
Kubayi D. G.(2001)Bounds for weighted Lebesgue functions for Exponential weights J. Comput. and Appl. Mathematics 133 429-443
[4]  
Levin A. L.(1992)Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights Constr. Appr. 8 463-535
[5]  
Lubinsky D. S.(1998)Bounds for orthogonal polynomials for exponential weights J. Comput. and Appl. Mathematics 99 475-490
[6]  
Levin A. L.(1999)Asymptotics associated with Exponential weights International Mathematics Research Notices 12 674-683
[7]  
Lubinsky D. S.(1995)An extension of the Erdős-Turán inequality for the sum of the successive fundamental polynomials Annals of Numer. Math. 2 305-308
[8]  
Levin A. L.(1994)Bounds for Lebesgue functions for Freud weights J. Appr. Theory 79 385-406
[9]  
Lubinsky D. S.(1995)Bounds for the weighted Lebesgue functions on a larger interval J. Comput. and Appl. Mathematics 65 293-298
[10]  
Lubinsky D. S.(1997)Weighted Lagrange interpolation and Hermite-Féjér interpolation on the real line J. Ineq. and Appl. 1 99-123