Recent developments in immobilizing titanium dioxide on supports for degradation of organic pollutants in wastewater- A review

被引:39
作者
Alhaji, M. H. [1 ,2 ]
Sanaullah, K. [2 ]
Khan, A. [2 ]
Hamza, A. [3 ]
Muhammad, A. [3 ]
Ishola, M. S. [4 ]
Rigit, A. R. H. [5 ]
Bhawani, S. A. [6 ]
机构
[1] Nigeria Inst Leather & Sci Technol, Zaria, Nigeria
[2] Univ Malaysia Sarawak, Dept Chem Engn & Energy Sustainabil, Kota Samarahan, Malaysia
[3] Ahmadu Bello Univ, Dept Chem Engn, Zaria, Nigeria
[4] Univ Ilorin, Dept Chem Engn, Kwara, Nigeria
[5] Univ Malaysia Sarawak, Dept Mech & Mfg Engn, Kota Samarahan, Malaysia
[6] Univ Malaysia Sarawak, Fac Resource Sci & Technol, Dept Chem, Kota Samarahan, Malaysia
关键词
Characterization; Immobilization techniques; Photocatalyst; Photodegradation; Support materials; CHEMICAL-VAPOR-DEPOSITION; PHOTOCATALYTIC DEGRADATION; MESOPOROUS SILICA; ACTIVATED CARBON; THIN-FILMS; ELECTROPHORETIC DEPOSITION; CATALYTIC PERFORMANCE; TREATMENT TECHNOLOGY; SURFACE MODIFICATION; HYDROGEN-PRODUCTION;
D O I
10.1007/s13762-017-1349-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This review focuses on the various types of supports used for immobilization of titanium dioxide nanomaterial catalyst for degradation of organic pollutants in wastewater. Several supports suitable to particular immobilization technique used for the degradation of pollutants in wastewater streams are explained. In general, a coating of catalyst on supports is carried out either by physical (e.g., thermal treatment) or by chemical (e.g., sol-gel). Among a range of the supports used, some of the prominent ones include glass, silica, activated carbon, stainless steel, cellulose, clay. Also, characterization methods in use such as X-ray diffraction, transmission electron microscope, scanning electron microscope, and UV-spectroscopy are discussed. The operating parameters such as temperature for the selected immobilization techniques are also explained.
引用
收藏
页码:2039 / 2052
页数:14
相关论文
共 134 条
  • [51] Strategies to Design Efficient Silica-Supported Photocatalysts for Reduction of CO2
    Hamdy, Mohamed S.
    Amrollahi, Rezvaneh
    Sinev, Ilya
    Mei, Bastian
    Mul, Guido
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (02) : 594 - 597
  • [52] Preparation and photocatalytic activity of Cu2+-doped 2, 4-dichlorophenol molecularly imprinted SiO2-TiO2 nanocomposite
    Han, D. M.
    Dai, G. L.
    Jia, W. P.
    Liang, H. D.
    [J]. MICRO & NANO LETTERS, 2010, 5 (02) : 76 - 80
  • [53] Sand Supported Mixed-Phase TiO2 Photocatalysts for Water Decontamination Applications
    Hanaor, Dorian A. H.
    Sorrell, Charles C.
    [J]. ADVANCED ENGINEERING MATERIALS, 2014, 16 (02) : 248 - 254
  • [54] Hosseini SN, 2008, PROCEEDINGS OF THE 3RD IASME/WSEAS INTERNATIONAL CONFERENCE ON ENERGY & ENVIRONMENT, P46
  • [55] Degradation of phenol using low concentration of ferric ions by the photo-Fenton process
    Huang, Yao-Hui
    Huang, Yu-Jen
    Tsai, Hung-Chih
    Chen, Hung-Ta
    [J]. JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2010, 41 (06) : 699 - 704
  • [56] SBA-15 Mesoporous Silica as Catalytic Support for Hydrodesulfurization Catalysts-Review
    Huirache-Acuna, Rafael
    Nava, Rufino
    Peza-Ledesma, Carmen L.
    Lara-Romero, Javier
    Alonso-Nunez, Gabriel
    Pawelec, Barbara
    Rivera-Munoz, Eric M.
    [J]. MATERIALS, 2013, 6 (09) : 4139 - 4167
  • [57] Inkson B.J., 2016, Materials CharacterizationUsing Nondestructive Evaluation (NDE) Methods, P17, DOI [10.1016/B978-0-08-100040-3.00002-X, DOI 10.1016/B978-0-08-100040-3.00002-X]
  • [58] Photochemical splitting of water for hydrogen production by photocatalysis: A review
    Ismail, Adel A.
    Bahnemann, Detlef W.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 128 : 85 - 101
  • [59] Ivanauskas A, 2013, CHEMIJA, V24, P97