Convergence rate of eigenvector empirical spectral distribution of large Wigner matrices

被引:0
|
作者
Ningning Xia
Zhidong Bai
机构
[1] Shanghai University of Finance and Economics,School of Statistics and Management, Shanghai Key Laboratory of Financial Information Technology
[2] Northeast Normal University,KLASMOE and School of Mathematics and Statistics
来源
Statistical Papers | 2019年 / 60卷
关键词
Wigner matrices; Eigenvectors; Empirical spectral distribution; Semicircular law; Convergence rate;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we adopt the eigenvector empirical spectral distribution (VESD) to investigate the limiting behavior of eigenvectors of a large dimensional Wigner matrix Wn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {W}_n.$$\end{document} In particular, we derive the optimal bound for the rate of convergence of the expected VESD of Wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{W}_n$$\end{document} to the semicircle law, which is of order O(n-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{-1/2})$$\end{document} under the assumption of having finite 10th moment. We further show that the convergence rates in probability and almost surely of the VESD are O(n-1/4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{-1/4})$$\end{document} and O(n-1/6),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{-1/6}),$$\end{document} respectively, under finite eighth moment condition. Numerical studies demonstrate that the convergence rate does not depend on the choice of unit vector involved in the VESD function, and the best possible bound for the rate of convergence of the VESD is of order O(n-1/2).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{-1/2}).$$\end{document}
引用
收藏
页码:983 / 1015
页数:32
相关论文
共 50 条
  • [1] Convergence rate of eigenvector empirical spectral distribution of large Wigner matrices
    Xia, Ningning
    Bai, Zhidong
    STATISTICAL PAPERS, 2019, 60 (03) : 633 - 665
  • [2] Convergence rate of eigenvector empirical spectral distribution of large Wigner matrices (vol 60, pg 983, 2019)
    Xia, Ningning
    Bai, Zhidong
    STATISTICAL PAPERS, 2019, 60 (05) : 1802 - 1802
  • [3] CONVERGENCE OF EIGENVECTOR EMPIRICAL SPECTRAL DISTRIBUTION OF SAMPLE COVARIANCE MATRICES
    Xi, Haokai
    Yang, Fan
    Yin, Jun
    ANNALS OF STATISTICS, 2020, 48 (02): : 953 - 982
  • [4] On the convergence of the spectral empirical process of Wigner matrices
    Bai, ZD
    Yao, J
    BERNOULLI, 2005, 11 (06) : 1059 - 1092
  • [5] Eigenvector distribution of Wigner matrices
    Antti Knowles
    Jun Yin
    Probability Theory and Related Fields, 2013, 155 : 543 - 582
  • [6] Eigenvector distribution of Wigner matrices
    Knowles, Antti
    Yin, Jun
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 155 (3-4) : 543 - 582
  • [7] CONVERGENCE RATE OF EXPECTED SPECTRAL DISTRIBUTIONS OF LARGE RANDOM MATRICES .1. WIGNER MATRICES
    BAI, ZD
    ANNALS OF PROBABILITY, 1993, 21 (02): : 625 - 648
  • [8] Remarks on the convergence rate of the spectral distributions of Wigner matrices
    Bai, ZD
    Miao, BQ
    Tsay, J
    JOURNAL OF THEORETICAL PROBABILITY, 1999, 12 (02) : 301 - 311
  • [9] Remarks on the Convergence Rate of the Spectral Distributions of Wigner Matrices
    Z. D. Bai
    Baiqi Miao
    Jhishen Tsay
    Journal of Theoretical Probability, 1999, 12 : 301 - 311
  • [10] CONVERGENCE RATES OF EIGENVECTOR EMPIRICAL SPECTRAL DISTRIBUTION OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRIX
    Xia, Ningning
    Qin, Yingli
    Bai, Zhidong
    ANNALS OF STATISTICS, 2013, 41 (05): : 2572 - 2607