On the A-obstacle problem and the Hausdorff measure of its free boundary

被引:0
作者
S. Challal
A. Lyaghfouri
J. F. Rodrigues
机构
[1] Fields Institute,
[2] University of Lisbon/CMAF,undefined
来源
Annali di Matematica Pura ed Applicata | 2012年 / 191卷
关键词
Obstacle problem; Entropy solution; -Laplace operator; Lewy–Stampacchia inequalities; Stability; Free boundary; Hausdorff measure; 35R35; 35B05; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove existence and uniqueness of an entropy solution to the A-obstacle problem, for L1-data. We also extend the Lewy–Stampacchia inequalities to the general framework of L1-data and show convergence and stability results. We then prove that the free boundary has finite (N − 1)-Hausdorff measure, which completes previous works on this subject by Caffarelli for the Laplace operator and by Lee and Shahgholian for the p-Laplace operator when p > 2.
引用
收藏
页码:113 / 165
页数:52
相关论文
共 37 条
[1]  
Aharouch L.(2008)Existence results for some unilateral problems without sign condition with obstacle free in Orlicz spaces Nonlinear Anal. 68 2362-2380
[2]  
Benkirane A.(2004)Existence and uniqueness of solution of unilateral problems with Ital. J. Pure Appl. Math. 16 87-102
[3]  
Rhoudaf M.(1995)-data in Orlicz spaces Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 241-273
[4]  
Benkirane A.(1996)An Ann. Inst. H. Poincaré Anal. Non Linéaire 13 539-551
[5]  
Bennouna J.(1999)-theory of existence and uniqueness of solutions of nonlinear elliptic equations J. Convex Anal. 6 195-206
[6]  
Bénilan P.(1981)Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data Bolletino UMI 18 109-113
[7]  
Boccardo L.(2009)Existence and uniqueness of solution of unilateral problems with Nonlinear Anal. Theory Methods Appl. 70 2772-2778
[8]  
Gallouët T.(2009) data Commun. Pure Appl. Anal. 8 1577-1583
[9]  
Gariepy R.(2010)A Remark on the Hausdorff Measure of a Free Boundar, and the Convergence of the Coincidence Sets Mediterr. J. Math. 7 283-297
[10]  
Pierre M.(2000)Porosity of free boundaries in J. Differ. Equ. 164 110-117