On Certain Sums of Arithmetic Functions Involving the GCD and LCM of Two Positive Integers

被引:0
作者
Randell Heyman
László Tóth
机构
[1] University of New South Wales,School of Mathematics and Statistics
[2] University of Pécs,Department of Mathematics
来源
Results in Mathematics | 2021年 / 76卷
关键词
Arithmetic function; greatest common divisor; least common multiple; hyperbolic summation; asymptotic formula; 11A05; 11A25; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain asymptotic formulas with remainder terms for the hyperbolic summations ∑mn≤xf((m,n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{mn\le x} f((m,n))$$\end{document} and ∑mn≤xf([m,n])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{mn\le x} f([m,n])$$\end{document}, where f belongs to certain classes of arithmetic functions, (m, n) and [m, n] denoting the gcd and lcm of the integers m, n. In particular, we investigate the functions f(n)=τ(n),logn,ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(n)=\tau (n), \log n, \omega (n)$$\end{document} and Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n)$$\end{document}. We also define a common generalization of the latter three functions, and prove a corresponding result.
引用
收藏
相关论文
共 28 条
  • [1] Baker RC(1996)The square-free divisor problem II Q. J. Math. (Oxford) (2) 47 133-146
  • [2] Chan TH(2012)On sums of Ramanujan sums Acta Arith. 152 1-10
  • [3] Kumchev AV(1985)Asymptotic results for a class of arithmetical functions Monatsh. Math. 99 19-27
  • [4] Chidambaraswamy J(1977)Remarque sur un article de T. M. Apostol Canad. Math. Bull. 20 77-88
  • [5] Sitaramachandrarao R(1966)The number of squarefree divisors of an integer Duke Math. J. 33 797-799
  • [6] De Koninck JM(2020)On certain sums concerning the GCD’s and LCM’s of Int. J. Number Theory 16 77-90
  • [7] Mercier A(2007) positive integers Math. Proc. Camb. Philos. Soc. 142 385-394
  • [8] Gioia AA(2012)-estimates for a class of arithmetic error terms Cent. Eur. J. Math. 10 761-774
  • [9] Vaidya AM(2010)On certain arithmetic functions involving the greatest common divisor Funct. Approx. Comment. Math. 43 7-14
  • [10] Hilberdink T(2016)On the average number of unitary factors of finite abelian groups Proc. R. Soc. Edinb. Sect. A Math. 146 769-775