On Huppert’s ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} conjecture for blocks

被引:0
作者
Christine Bessenrodt
Yang Liu
Ziqun Lu
Jiping Zhang
机构
[1] Leibniz Universität Hannover,Institut für Algebra, Zahlentheorie und Diskrete Mathematik
[2] Tianjin Normal University,School of Mathematical Science
[3] Tsinghua University,Department of Mathematics
[4] Peking University,Beijing International Center for Mathematical Research
关键词
Irreducible character; Block; Finite group; 20C20; 20C15;
D O I
10.1007/s00013-021-01696-9
中图分类号
学科分类号
摘要
For n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \mathbb {N}$$\end{document}, we denote by π(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi (n)$$\end{document} the set of prime divisors of n. For a block B of a finite group G, let Irr(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{Irr}\,}}(B)$$\end{document} be the set of irreducible complex characters of G belonging to B. Let ρ(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (B)$$\end{document} be the set of those primes dividing the degree of some character in Irr(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{Irr}\,}}(B)$$\end{document}, and let σ(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (B)$$\end{document} be the maximal number of primes dividing such a degree. For a solvable group G, we prove that |ρ(B)|≤3σ(B)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\rho (B)|\le 3\sigma (B)+1$$\end{document}. This provides a block result in the spirit of Huppert’s ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} conjecture.
引用
收藏
页码:339 / 347
页数:8
相关论文
共 3 条
[1]  
Manz O(1993)Arithmetically long orbits of solvable linear groups Ilinois J. Math. 37 652-665
[2]  
Wolf TR(1983)Supersolvable automorphism groups of solvable groups Math. Z. 183 47-73
[3]  
Turull A(undefined)undefined undefined undefined undefined-undefined