A continuous characterization of the maximum vertex-weighted clique in hypergraphs

被引:0
作者
Qingsong Tang
Xiangde Zhang
Guoren Wang
Cheng Zhao
机构
[1] Northeastern University,College of Sciences
[2] School of Computer Science and Engineering,Department of Mathematics and Computer Science
[3] Indiana State University,undefined
来源
Journal of Combinatorial Optimization | 2018年 / 35卷
关键词
Vertex-weighted hypergraphs; Cliques of hypergraphs; Polynomial optimization; 90C27; 05C65;
D O I
暂无
中图分类号
学科分类号
摘要
For a simple graph G on n vertices with adjacency matrix A, Motzkin and Strauss established a remarkable connection between the clique number and the global maximum value of the quadratic programm: max{xTAx}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{max}\{ \mathbf {x}^T A \mathbf {x}\}$$\end{document} on the standard simplex: {∑i=1nxi=1,xi≥0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\sum _{i=1}^{n} x_i =1, x_i \ge 0 \}$$\end{document}. In Gibbons et al. (Math Oper Res 122:754–768, 1997), an extension of the Motzkin–Straus formulation was provided for the vertex-weighted clique number of a graph. In this paper, we provide a continuous characterization of the maximum vertex-weighted clique problem for vertex-weighted uniform hypergraphs.
引用
收藏
页码:1250 / 1260
页数:10
相关论文
共 24 条
[1]  
Bomze IM(1997)Evolution towards the maximum clique J Glob Optim 10 143-164
[2]  
Budinich M(2003)Exact bounds on the order of the maximum clique of a graph Discrete Appl Math 127 535-543
[3]  
Bulò SR(2009)A generalization of the Motzkin–Straus theorem to hypergraphs Optim Lett 3 287-295
[4]  
Pelillo M(2007)A continuous-based approach for partial clique enumeration Graph Based Represent Pattern Recognit 4538 61-70
[5]  
Bulò SR(2006)A new trust region technique for the maximum weight clique problem Discrete Appl Math 154 2080-2096
[6]  
Torsello A(1997)Continuous characterizations of the maximum clique problem Math Oper Res 122 754-768
[7]  
Pelillo M(2001)Global optimization with polynimal and the problem of moments SLAM J Optim 3 796-817
[8]  
Busygin S(2006)A PTAS for the minimization of polynomials of fixed degree over the simplex Theor Comput Sci 361 210-225
[9]  
Gibbons LE(1994)Stable sets and polynomials Discrete Math 124 137-153
[10]  
Hearn DW(1965)Maxima for graphs and a new proof of a theorem of Turán Can J Math 17 533-540