Face-Centered Cubic Crystallization of Atomistic Configurations

被引:0
作者
L. C. Flatley
F. Theil
机构
[1] University of Warwick,Mathematics Institute
来源
Archive for Rational Mechanics and Analysis | 2015年 / 218卷
关键词
Triangular Lattice; Reference Path; Contact Graph; Label Path; Admissible Path;
D O I
暂无
中图分类号
学科分类号
摘要
We address the question of whether three-dimensional crystals are minimizers of classical many-body energies. This problem is of conceptual relevance as it presents a significant milestone towards understanding, on the atomistic level, phenomena such as melting or plastic behavior. We characterize a set of rotation- and translation-invariant two- and three-body potentials V2, V3 such that the energy minimum of 1#YE(Y)=1#Y2∑{y,y′}⊂YV2(y,y′)+6∑{y,y′,y′′}⊂YV3(y,y′,y′′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{\#Y}E(Y) = \frac{1}{\# Y} \left(2\sum_{\{y,y'\} \subset Y}V_2(y, y') + 6\sum_{\{y,y',y''\} \subset Y} V_3(y,y',y'')\right)$$\end{document}over all Y⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y \subset \mathbb{R}^3}$$\end{document}, #Y = n, converges to the energy per particle in the face-centered cubic (fcc) lattice as n tends to infinity. The proof involves a careful analysis of the symmetry properties of the fcc lattice.
引用
收藏
页码:363 / 416
页数:53
相关论文
共 11 条
[1]  
Blanc X.(2002)From molecular models to continuum mechanics Arch. Rat. Mech. Anal. 164 341-381
[2]  
LeBris C.(2002)A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity Comm. Pure Appl. Math. 55 1461-1506
[3]  
Lions P.L.(1974)The infinite-volume ground state of the Lennard-Jones potential J. Stat. Phys. 20 719-724
[4]  
Friesecke G.(2005)A proof of the Kepler conjecture Ann. Math. 162 1065-1185
[5]  
James R.(1981)The ground state for soft disks J. Stat. Phys. 26 367-372
[6]  
Müller S.(2006)A proof of crystallisation in two dimensions Comm. Math. Phys. 262 209-236
[7]  
Gardner C.S.(undefined)undefined undefined undefined undefined-undefined
[8]  
Radin C.(undefined)undefined undefined undefined undefined-undefined
[9]  
Hales T.(undefined)undefined undefined undefined undefined-undefined
[10]  
Radin C.(undefined)undefined undefined undefined undefined-undefined