Linear representations of Aut(Fr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Aut}(F_r)$$\end{document} on the homology of representation varieties

被引:0
作者
Yael Algom-Kfir
Asaf Hadari
机构
[1] University of Haifa,
[2] University of Hawai’i at Manoa,undefined
关键词
Representation varieties; Automorphism groups; Homology; Torelli group; 57M07;
D O I
10.1007/s10711-020-00530-w
中图分类号
学科分类号
摘要
Let G be a compact semisimple linear Lie group. We study the action of Aut(Fr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Aut}(F_r)$$\end{document} on the space H∗(Gr;Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_*(G^r; {\mathbb {Q}})$$\end{document}. We compute the image of this representation and prove that it only depends on the rank of g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {g}}$$\end{document}. We show that the kernel of this representation is always the Torrelli subgroup IAr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {IA}_r$$\end{document} of Aut(Fr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Aut}(F_r)$$\end{document}.
引用
收藏
页码:199 / 206
页数:7
相关论文
共 8 条
[1]  
Cappell SE(2000)The action of the Torelli group on the homology of representation spaces is nontrivial Topology 39 851-871
[2]  
Lee R(2009)Linear representations of the automorphism group of a free group Geom. Funct. Anal. 18 1564-1608
[3]  
Miller EY(1924)Die Isomorphismengruppe der freien Gruppen Math. Ann. 91 169-209
[4]  
Grunewald F(1939)Homologies in compact Lie groups Rec. Math. N. S. [Mat. Sbornik] 6 389-422
[5]  
Lubotzky A(1941)Beiträge zur Topologie der Gruppen-Mannigfaltigkeiten Ann. Math. 2 1091-1137
[6]  
Nielsen J(undefined)undefined undefined undefined undefined-undefined
[7]  
Pontrjagin L(undefined)undefined undefined undefined undefined-undefined
[8]  
Samelson H(undefined)undefined undefined undefined undefined-undefined