Ultraproducts and Chevalley groups

被引:0
作者
Françoise Point
机构
[1] Université Mons-Hainaut,
[2] Institut de Mathématiques et Informatique,undefined
[3] 15,undefined
[4] avenue Maistriau,undefined
[5] B-7000 Mons,undefined
[6] Belgium ,undefined
来源
Archive for Mathematical Logic | 1999年 / 38卷
关键词
Finite Group; Finite Field; Chevalley Group; Perfect Field; Twisted Type;
D O I
暂无
中图分类号
学科分类号
摘要
Given a simple non-trivial finite-dimensional Lie algebra L, fields \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $K_i$\end{document} and Chevalley groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L(K_i)$\end{document}, we first prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Pi_{\mathcal{U}} L(K_i)$\end{document} is isomorphic to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L(\Pi_{\mathcal{U}}K_i)$\end{document}. Then we consider the case of Chevalley groups of twisted type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${}^n\!L$\end{document}. We obtain a result analogous to the previous one. Given perfect fields \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $K_i$\end{document} having the property that any element is either a square or the opposite of a square and Chevalley groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${}^n\!L(K_i)$\end{document}, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\pu{}^n\!L(K_i)$\end{document} is isomorphic to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${}^n\!L(\pu K_i)$\end{document}. We apply our results to prove the decidability of the set of sentences true in almost all finite groups of the form L(K) where K is a finite field and L a fixed untwisted Chevalley type.
引用
收藏
页码:355 / 372
页数:17
相关论文
共 50 条
  • [31] On Lusztig's Character Formula for Chevalley Groups of Type Al
    Ibraev, Sherali S.
    Kainbaeva, Larissa
    Yensebayeva, Gulzat M.
    Ibrayeva, Anar A.
    Parmenova, Manat Z.
    Yeshmurat, Gulnur K.
    MATHEMATICS, 2024, 12 (23)
  • [32] DEFINING RELATIONS FOR THE CARPET SUBGROUPS OF CHEVALLEY GROUPS OVER FIELDS
    Nuzhin, Ya N.
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (05) : 920 - 926
  • [33] Steinberg characters for Chevalley groups over finite local rings
    Campbell, Peter S.
    JOURNAL OF ALGEBRA, 2007, 313 (02) : 486 - 530
  • [34] Defining Relations for the Carpet Subgroups of Chevalley Groups over Fields
    Ya. N. Nuzhin
    Siberian Mathematical Journal, 2022, 63 : 920 - 926
  • [35] Levi Decomposition for Carpet Subgroups of Chevalley Groups Over a Field
    Ya. N. Nuzhin
    Algebra and Logic, 2016, 55 : 367 - 375
  • [36] Bruhat Decomposition for Carpet Subgroups of Chevalley Groups Over Fields
    Nuzhin, Ya N.
    Stepanov, A., V
    ALGEBRA AND LOGIC, 2021, 60 (05) : 327 - 335
  • [37] Bruhat Decomposition for Carpet Subgroups of Chevalley Groups Over Fields
    Ya. N. Nuzhin
    A. V. Stepanov
    Algebra and Logic, 2021, 60 : 327 - 335
  • [38] Levi Decomposition for Carpet Subgroups of Chevalley Groups Over a Field
    Nuzhin, Ya. N.
    ALGEBRA AND LOGIC, 2016, 55 (05) : 367 - 375
  • [39] Chevalley groups over Z: a representation-theoretic approach
    Ali, Abid
    Carbone, Lisa
    Murray, Scott H.
    EUROPEAN JOURNAL OF MATHEMATICS, 2025, 11 (01)
  • [40] ON REPRESENTATIONS OF ELEMENTARY SUBGROUPS OF CHEVALLEY-GROUPS OVER ALGEBRAS
    CHEN, Y
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (08) : 2357 - 2361