Ultraproducts and Chevalley groups

被引:0
|
作者
Françoise Point
机构
[1] Université Mons-Hainaut,
[2] Institut de Mathématiques et Informatique,undefined
[3] 15,undefined
[4] avenue Maistriau,undefined
[5] B-7000 Mons,undefined
[6] Belgium ,undefined
来源
Archive for Mathematical Logic | 1999年 / 38卷
关键词
Finite Group; Finite Field; Chevalley Group; Perfect Field; Twisted Type;
D O I
暂无
中图分类号
学科分类号
摘要
Given a simple non-trivial finite-dimensional Lie algebra L, fields \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $K_i$\end{document} and Chevalley groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L(K_i)$\end{document}, we first prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Pi_{\mathcal{U}} L(K_i)$\end{document} is isomorphic to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L(\Pi_{\mathcal{U}}K_i)$\end{document}. Then we consider the case of Chevalley groups of twisted type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${}^n\!L$\end{document}. We obtain a result analogous to the previous one. Given perfect fields \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $K_i$\end{document} having the property that any element is either a square or the opposite of a square and Chevalley groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${}^n\!L(K_i)$\end{document}, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\pu{}^n\!L(K_i)$\end{document} is isomorphic to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${}^n\!L(\pu K_i)$\end{document}. We apply our results to prove the decidability of the set of sentences true in almost all finite groups of the form L(K) where K is a finite field and L a fixed untwisted Chevalley type.
引用
收藏
页码:355 / 372
页数:17
相关论文
共 50 条