Ultrasound detection using a thermal-assisted microcavity Raman laser

被引:5
|
作者
Meng, Jia-Wei [1 ,2 ]
Zhang, Pei-Ji [1 ,2 ]
Tang, Shui-Jing [1 ,2 ]
Xiao, Yun-Feng [1 ,2 ,3 ,4 ]
机构
[1] Peking Univ, Frontiers Sci Ctr Nanooptoelectron, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
[4] Peking Univ, Yangtze Delta Inst Optoelect, Nantong 226010, Peoples R China
来源
AAPPS BULLETIN | 2022年 / 32卷 / 01期
基金
中国国家自然科学基金;
关键词
Optical microcavity; Ultrasound sensing; Raman laser; Thermal effects; PHOTOACOUSTIC TOMOGRAPHY; RESONATOR;
D O I
10.1007/s43673-022-00068-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Optical microcavities have emerged as promising platforms for ultrasound detection. One of the main tendencies in recent studies is to develop high-Q microresonators for ultrasensitive ultrasound detection, while the nonlinear optical effects become significant but are generally neglected. Here, we propose a thermal-assisted microcavity Raman laser for ultrasound detection. Acoustic waves modulate the resonant frequency of the cavity mode, altering the coupled efficiency of a fixed-wavelength input laser, and therefore the output Raman power. Experimentally, the noise equivalent pressure reaches as low as 8.1 Pa at 120 kHz in air. Besides, it is found that the thermal effect involved in high-Q microcavities can compensate for the low-frequency noises, while without degrading their sensitivity to high-frequency acoustic waves above hundreds of kilohertz. Therefore, it enables long-standing stability during the measurements due to the natural resistance to laser frequency drifts and environmental disturbances, which holds great potential in practical applications of ultrasound sensing and imaging.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Detection of mode splitting with microcavity Raman laser
    Li, Bei-Bei
    Jiang, Xue-Feng
    Gong, Qihuang
    Xiao, Yun-Feng
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [2] Brush-Shaped ZnO Heteronanorods Synthesized Using Thermal-Assisted Pulsed Laser Deposition
    Choi, Jaewan
    Ji, Hyunjin
    Tambunan, Octolia Togibasa
    Hwang, In-Sung
    Woo, Hyung-Sik
    Lee, Jong-Heun
    Lee, Bo Wha
    Liu, Chunli
    Rhee, Seuk Joo
    Jung, Chang Uk
    Kim, Gyu-Tae
    ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (12) : 4682 - 4688
  • [3] Replication of polymer microstructure using thermal-assisted ultrasonic embossing
    Luo, Yi
    Yan, Xu
    Chen, Li
    Wang, Xiao-Dong
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2014, 22 (05): : 1220 - 1226
  • [4] Modeling of Thermal-Assisted Dislocation Friction
    Liao, Y.
    Marks, L. D.
    TRIBOLOGY LETTERS, 2010, 37 (02) : 283 - 288
  • [5] Modeling of Thermal-Assisted Dislocation Friction
    Y. Liao
    L. D. Marks
    Tribology Letters, 2010, 37 : 283 - 288
  • [6] Single nanoparticle detection using a microcavity laser
    He, Lina
    Ozdemir, Sahin Kaya
    Zhu, Jiangang
    Yang, Lan
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [7] Thermal-assisted contactless photoelectrochemical etching for GaN
    Horikiri, Fumimasa
    Fukuhara, Noboru
    Ohta, Hiroshi
    Asai, Naomi
    Narita, Yoshinobu
    Yoshida, Takehiro
    Mishima, Tomoyoshi
    Toguchi, Masachika
    Miwa, Kazuki
    Ogami, Hiroki
    Sato, Taketomo
    APPLIED PHYSICS EXPRESS, 2020, 13 (04)
  • [8] Titanium enhanced Raman microcavity laser
    Deka, Nishita
    Maker, Ashley J.
    Armani, Andrea M.
    OPTICAL COMPONENTS AND MATERIALS XI, 2014, 8982
  • [9] Thermal-Assisted Photosynthesis of Nitric Acid From Air
    Li, Mingzhu
    Fang, Long
    Zhang, Linlin
    Shi, Chuanwei
    Guo, Mingxia
    Jin, Yu
    Yang, Xiaolong
    Liu, Xia
    Ding, Xin
    ADVANCED ENERGY MATERIALS, 2024,
  • [10] Ultralow-threshold Raman laser using a spherical dielectric microcavity
    S. M. Spillane
    T. J. Kippenberg
    K. J. Vahala
    Nature, 2002, 415 : 621 - 623