Deterministic Identity Testing for Sum of Read-Once Oblivious Arithmetic Branching Programs

被引:0
作者
Rohit Gurjar
Arpita Korwar
Nitin Saxena
Thomas Thierauf
机构
[1] Aalen University,Faculty of Electronics and Computer Science
[2] IIT Kanpur,Department of Computer Science and Engineering
来源
computational complexity | 2017年 / 26卷
关键词
68Q25; 68W30; Polynomial identity testing; hitting-sets; sum of ROABPs;
D O I
暂无
中图分类号
学科分类号
摘要
A read-once oblivious arithmetic branching program (ROABP) is an arithmetic branching program (ABP) where each variable occurs in at most one layer. We give the first polynomial-time whitebox identity test for a polynomial computed by a sum of constantly many ROABPs. We also give a corresponding blackbox algorithm with quasi-polynomial-time complexity nO(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n^{O({\rm log}\,n)}}$$\end{document}. In both the cases, our time complexity is double exponential in the number of ROABPs.
引用
收藏
页码:835 / 880
页数:45
相关论文
共 14 条
  • [1] Zeev Dvir(2007)Locally Decodable Codes with Two Queries and Polynomial Identity Testing for Depth 3 Circuits SIAM Journal on Computing 36 1404-1434
  • [2] Amir Shpilka(1996)Mod-2-OBDDs - a Data Structure that Generalizes EXOR-Sum-of-Products and Ordered Binary Decision Diagrams Formal Methods in System Design 8 273-282
  • [3] Jordan Gergov(2007)Polynomial Identity Testing for Depth 3 Circuits Computational Complexity 16 115-138
  • [4] Christoph Meinel(2005)Deterministic polynomial identity testing in non-commutative models Computational Complexity 14 1-19
  • [5] Neeraj Kayal(2009)Lower Bounds and Separa tions for Constant Depth Multilinear Circuits Computational Complexity 18 171-207
  • [6] Nitin Saxena(2011)An Almost Opti mal Rank Bound for Depth-3 Identities SIAM Journal on Computing 40 200-224
  • [7] Ran Raz(2012)Blackbox Identity Testing for Bounded Top-Fanin Depth-3 Circuits: The Field Doesn’t Matter SIAM Journal on Computing 41 1285-1298
  • [8] Amir Shpilka(undefined)undefined undefined undefined undefined-undefined
  • [9] Ran Raz(undefined)undefined undefined undefined undefined-undefined
  • [10] Amir Yehudayoff(undefined)undefined undefined undefined undefined-undefined