Additive Problem with k Numbers of a Special Form

被引:0
作者
Zhukova A.A. [1 ,2 ]
Shutov A.V. [1 ,2 ]
机构
[1] Vladimir Branch of the Russian Presidential Academy of National Economy and Public Administration, Vladimir
[2] Vladimir State University named after Alexander and Nikolay Stoletovs, Vladimir
关键词
11P99; additive problem; uniform distribution;
D O I
10.1007/s10958-022-05681-7
中图分类号
学科分类号
摘要
In this paper, we consider an additive problem of the form n1 + n2 +.. + nk = N with at least two summands, where the summands satisfy the condition ni ∈ ℕ(αi, Ii) for 1 ≤ i ≤ k and ℕ(αI) = {n ∈ ℕ : {nα} ∈ I}. © 2022, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:163 / 174
页数:11
相关论文
共 25 条
[1]  
Akiyama S., Self Affine Tiling and Pisot Numeration System, pp. 7-17, (1999)
[2]  
Gritsenko S.A., Mot'kina N.N., On a version of the ternary Goldbach’s problem, Dokl. Akad. Nauk. Tajikistan, 52, 6, pp. 413-417, (2009)
[3]  
Gritsenko S.A., Mot'kina N.N., Hua Loo Keng’s problem involving primes of a special type, Dokl. Akad. Nauk. Tajikistan, 52, 7, pp. 497-500, (2009)
[4]  
Gritsenko S.A., Mot'Kina N.N., On Some Additive Problems of Number Theory, 5, 76, pp. 83-87, (2010)
[5]  
Gritsenko S.A., Mot'kina N.N., On the computation of some singular series, Chebyshev. Sb., 12, 4, pp. 85-92, (2011)
[6]  
Gritsenko S.A., Mot'kina N.N., On Chudakov’s theorem for prime numbers of a special form, Chebyshev. Sb., 12, 4, pp. 75-84, (2011)
[7]  
Gritsenko S.A., Mot'kina N.N., Warings problem involving natural numbers of a special type, Chebyshev. Sb., 15, 3, pp. 31-47, (2014)
[8]  
Davletyarova E.P., Zhukova A.A., Shutov A.V., Geometrization of Fibonacci numeration system and its applications to number theory, Algebra Anal., 25, 6, pp. 1-23, (2013)
[9]  
Davletyarova E.P., Zhukova A.A., Shutov A.V., Geometrization of the generalized Fibonacci numeration system with applications to number theory, Chebyshev. Sb., 17, 2, pp. 88-112, (2016)
[10]  
Krasil'shchikov V.V., Shutov A.V., Distribution of points of one-dimensional quasilattices with respect to a variable module, Izv. Vyssh. Uchebn. Zaved. Mat., 3, pp. 17-23, (2012)