Liouville theory and the Weil-Petersson geometry of moduli space
被引:0
|
作者:
Sarah M. Harrison
论文数: 0引用数: 0
h-index: 0
机构:McGill University,Department of Physics
Sarah M. Harrison
Alexander Maloney
论文数: 0引用数: 0
h-index: 0
机构:McGill University,Department of Physics
Alexander Maloney
Tokiro Numasawa
论文数: 0引用数: 0
h-index: 0
机构:McGill University,Department of Physics
Tokiro Numasawa
机构:
[1] McGill University,Department of Physics
[2] McGill University,Department of Mathematics and Statistics
[3] University of Tokyo,Institute for Solid State Physics
来源:
Journal of High Energy Physics
|
/
2023卷
关键词:
Conformal and W Symmetry;
Field Theories in Lower Dimensions;
Random Systems;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Liouville theory describes the dynamics of surfaces with constant negative curvature and can be used to study the Weil-Petersson geometry of the moduli space of Riemann surfaces. This leads to an efficient algorithm to compute the Weil-Petersson metric to arbitrary accuracy using Zamolodchikov’s recursion relation for conformal blocks. For example, we compute the metric on M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{M} $$\end{document}0,4 numerically to high accuracy by considering Liouville theory on a sphere with four punctures. We numerically compute the eigenvalues of the Weil-Petersson Laplacian, and find evidence that the obey the statistics of a random matrix in the Gaussian Orthogonal Ensemble.
机构:
Multimedia Univ, Fac Informat Technol, Cyberjaya 63100, Selangor Darul, MalaysiaMultimedia Univ, Fac Informat Technol, Cyberjaya 63100, Selangor Darul, Malaysia