Liouville theory and the Weil-Petersson geometry of moduli space

被引:0
|
作者
Sarah M. Harrison
Alexander Maloney
Tokiro Numasawa
机构
[1] McGill University,Department of Physics
[2] McGill University,Department of Mathematics and Statistics
[3] University of Tokyo,Institute for Solid State Physics
来源
Journal of High Energy Physics | / 2023卷
关键词
Conformal and W Symmetry; Field Theories in Lower Dimensions; Random Systems;
D O I
暂无
中图分类号
学科分类号
摘要
Liouville theory describes the dynamics of surfaces with constant negative curvature and can be used to study the Weil-Petersson geometry of the moduli space of Riemann surfaces. This leads to an efficient algorithm to compute the Weil-Petersson metric to arbitrary accuracy using Zamolodchikov’s recursion relation for conformal blocks. For example, we compute the metric on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M} $$\end{document}0,4 numerically to high accuracy by considering Liouville theory on a sphere with four punctures. We numerically compute the eigenvalues of the Weil-Petersson Laplacian, and find evidence that the obey the statistics of a random matrix in the Gaussian Orthogonal Ensemble.
引用
收藏
相关论文
共 50 条