Complex Symmetric Toeplitz Operators

被引:0
作者
Qinggang Bu
Yong Chen
Sen Zhu
机构
[1] Jilin University,Department of Mathematics
[2] Hangzhou Normal University,Department of Mathematics
来源
Integral Equations and Operator Theory | 2021年 / 93卷
关键词
Toeplitz operators; Hardy space; Complex symmetric operators; Primary 47B35; 47A65; Secondary 47B99;
D O I
暂无
中图分类号
学科分类号
摘要
This paper aims to study when a Toeplitz operator Tφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\varphi $$\end{document} on the Hardy space H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document} of the unit disk is complex symmetric, that is, Tφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\varphi $$\end{document} admits a symmetric matrix representation relative to some orthonormal basis of H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document}. For certain trigonometric symbols φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}, we give necessary and sufficient conditions for Tφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\varphi $$\end{document} to be complex symmetric. In particular, we show that their complex symmetry coincides with the property “unitary equivalence to their transposes”.
引用
收藏
相关论文
共 56 条
[1]  
Baranov A(2011)Symbols of truncated Toeplitz operators J. Funct. Anal. 261 3437-3456
[2]  
Bessonov R(2010)Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators J. Funct. Anal. 259 2673-2701
[3]  
Kapustin V(2010)Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity Indiana Univ. Math. J. 59 595-620
[4]  
Baranov A(2018)Dual truncated Toeplitz operators J. Math. Anal. Appl. 461 929-946
[5]  
Chalendar I(2007)Means of unitaries, conjugations, and the Friedrichs operator J. Math. Anal. Appl. 335 941-947
[6]  
Fricain E(2009)The norm and modulus of a Foguel operator Indiana Univ. Math. J. 58 2305-2315
[7]  
Mashreghi J(2014)Which weighted composition operators are complex symmetric? Oper. Theory Adv. Appl. 236 171-179
[8]  
Timotin D(2014)Two remarks about nilpotent operators of order two Proc. Am. Math. Soc. 142 1749-1756
[9]  
Cima JA(2014)Mathematical and physical aspects of complex symmetric operators J. Phys. A 47 353001, 54 pp-1315
[10]  
Garcia SR(2006)Complex symmetric operators and applications Trans. Am. Math. Soc. 358 1285-3931