Corrections to Einstein’s Relation for Brownian Motion in a Tilted Periodic Potential

被引:0
作者
J. C. Latorre
G. A. Pavliotis
P. R. Kramer
机构
[1] Freie Universität Berlin,Department of Mathematics and Computer Science
[2] Imperial College London,Department of Mathematics
[3] Rensselaer Polytechnic Institute,Mathematical Sciences Department
来源
Journal of Statistical Physics | 2013年 / 150卷
关键词
Homogenization theory; Linear response theory; Einstein’s relation; Spectral methods for PDEs;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we revisit the problem of Brownian motion in a tilted periodic potential. We use homogenization theory to derive general formulas for the effective velocity and the effective diffusion tensor that are valid for arbitrary tilts. Furthermore, we obtain power series expansions for the velocity and the diffusion coefficient as functions of the external forcing. Thus, we provide systematic corrections to Einstein’s formula and to linear response theory. Our theoretical results are supported by extensive numerical simulations. For our numerical experiments we use a novel spectral numerical method that leads to a very efficient and accurate calculation of the effective velocity and the effective diffusion tensor.
引用
收藏
页码:776 / 803
页数:27
相关论文
共 67 条
  • [1] Baiesi M.(2011)The modified Sutherland-Einstein relation for diffusive non-equilibria Proc. R. Soc., Math. Phys. Eng. Sci. 467 2792-2809
  • [2] Maes C.(1996)Noise-activated diffusion in the egg-carton potential Phys. Rev. E 54 4708-4721
  • [3] Wynants B.(1997)An analytical approximation to the diffusion coefficient in overdamped multidimensional systems Physica A 246 115-131
  • [4] Caratti G.(2008)Asymptotic velocity of one dimensional diffusions with periodic drift J. Math. Biol. 56 765-792
  • [5] Ferrando R.(1999)Threshold diffusion in a tilted washboard potential Europhys. Lett. 48 491-497
  • [6] Spadacini R.(1998)Constructive role of noise: fast fluctuation asymptotics of transport in stochastic ratchets Chaos 8 643-649
  • [7] Tommei G.E.(2008)Diffusion of colloidal particles in a tilted periodic potential: theory versus experiment Phys. Rev. E 77 1497-1528
  • [8] Caratti G.(2002)Combined Hermite spectral-finite difference method for the Fokker-Planck equation Math. Comput. 71 261-279
  • [9] Ferrando R.(2004)Periodic homogenization for hypoelliptic diffusions J. Stat. Phys. 117 407-435
  • [10] Spadacini R.(2004)Diffusion and current of Brownian particles in tilted piecewise linear potentials: Amplification and coherence Phys. Rev. E 69 183-196