Mirror Symmetry, Singularity Theory and Non-commutative Hodge Structures

被引:0
|
作者
Christian Sevenheck
机构
[1] Institut für Mathematik,Lehrstuhl für Mathematik VI
[2] Universität Mannheim,undefined
关键词
Quantum cohomology; Frobenius manifold; Gauß-Manin system; Hypergeometric ; -module; Toric variety; Landau-Ginzburg model; Mirror symmetry; Non-commutative Hodge structure; 14J33; 14M25; 14D07; 32S40; 53D45;
D O I
10.1365/s13291-012-0049-8
中图分类号
学科分类号
摘要
We review a version of the mirror correspondence for smooth toric varieties with a numerically effective anticanonical bundle. We give a precise description of the so-called B-model, which involves the Gauß-Manin system of a family of Laurent polynomials. We show how to derive from these data a variation of non-commutative Hodge structures and describe general results on period maps and classifying spaces for these generalized Hodge structures. Finally, we explain a version of mirror symmetry as an isomorphism of Frobenius manifolds.
引用
收藏
页码:131 / 162
页数:31
相关论文
共 50 条