A large-deviations principle for all the components in a sparse inhomogeneous random graph

被引:0
作者
Luisa Andreis
Wolfgang König
Heide Langhammer
Robert I. A. Patterson
机构
[1] Politecnico di Milano,Dipartimento di Matematica
[2] TU Berlin and WIAS,undefined
[3] WIAS,undefined
来源
Probability Theory and Related Fields | 2023年 / 186卷
关键词
Inhomogeneous random graph; Erdős–Rényi random graph; Sparse random graph; Empirical measures of components; Large deviations; Projective limits; Giant cluster phase transition; Asymptotics for connection probabilities; Spatial coagulation model; Flory equation; Stochastic block model; 05C30; 05C80; 60F10; 60G57; 60J80;
D O I
暂无
中图分类号
学科分类号
摘要
We study an inhomogeneous sparse random graph, GN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal G }_N$$\end{document}, on [N]={1,⋯,N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[N]=\{1,\dots ,N\}$$\end{document} as introduced in a seminal paper by Bollobás et al. (Random Struct Algorithms 31(1):3–122, 2007): vertices have a type (here in a compact metric space S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal S }$$\end{document}), and edges between different vertices occur randomly and independently over all vertex pairs, with a probability depending on the two vertex types. In the limit N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\rightarrow \infty $$\end{document}, we consider the sparse regime, where the average degree is O(1). We prove a large-deviations principle with explicit rate function for the statistics of the collection of all the connected components, registered according to their vertex type sets, and distinguished according to being microscopic (of finite size) or macroscopic (of size ≍N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\asymp N$$\end{document}). In doing so, we derive explicit logarithmic asymptotics for the probability that GN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal G }_N$$\end{document} is connected. We present a full analysis of the rate function including its minimizers. From this analysis we deduce a number of limit laws, conditional and unconditional, which provide comprehensive information about all the microscopic and macroscopic components of GN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal G }_N$$\end{document}. In particular, we recover the criterion for the existence of the phase transition given in Bollobás et al. (2007).
引用
收藏
页码:521 / 620
页数:99
相关论文
共 48 条
[21]  
Hazra RS(1998)Some large deviation results for sparse random graphs Probab. Theory Relat. Fields 14 480-508
[22]  
Chatterjee S(2009)Erdős–Rényi random graphs + forest fires = self-organized criticality Electron. J. Probab. 66 undefined-undefined
[23]  
Chatterjee S(2002)General formalism for inhomogeneous random graphs Phys. Rev. E 15 undefined-undefined
[24]  
Varadhan S(1970)On the probability of connectedness of a random graph Theory Probab. Appl. 42 undefined-undefined
[25]  
Cook NA(2013)Critical behavior in inhomogeneous random graphs Random Struct. Algorithms undefined undefined-undefined
[26]  
Dembo A(undefined)undefined undefined undefined undefined-undefined
[27]  
Crane E(undefined)undefined undefined undefined undefined-undefined
[28]  
Ráth B(undefined)undefined undefined undefined undefined-undefined
[29]  
Yeo D(undefined)undefined undefined undefined undefined-undefined
[30]  
Dembo A(undefined)undefined undefined undefined undefined-undefined