A large-deviations principle for all the components in a sparse inhomogeneous random graph

被引:0
作者
Luisa Andreis
Wolfgang König
Heide Langhammer
Robert I. A. Patterson
机构
[1] Politecnico di Milano,Dipartimento di Matematica
[2] TU Berlin and WIAS,undefined
[3] WIAS,undefined
来源
Probability Theory and Related Fields | 2023年 / 186卷
关键词
Inhomogeneous random graph; Erdős–Rényi random graph; Sparse random graph; Empirical measures of components; Large deviations; Projective limits; Giant cluster phase transition; Asymptotics for connection probabilities; Spatial coagulation model; Flory equation; Stochastic block model; 05C30; 05C80; 60F10; 60G57; 60J80;
D O I
暂无
中图分类号
学科分类号
摘要
We study an inhomogeneous sparse random graph, GN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal G }_N$$\end{document}, on [N]={1,⋯,N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[N]=\{1,\dots ,N\}$$\end{document} as introduced in a seminal paper by Bollobás et al. (Random Struct Algorithms 31(1):3–122, 2007): vertices have a type (here in a compact metric space S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal S }$$\end{document}), and edges between different vertices occur randomly and independently over all vertex pairs, with a probability depending on the two vertex types. In the limit N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\rightarrow \infty $$\end{document}, we consider the sparse regime, where the average degree is O(1). We prove a large-deviations principle with explicit rate function for the statistics of the collection of all the connected components, registered according to their vertex type sets, and distinguished according to being microscopic (of finite size) or macroscopic (of size ≍N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\asymp N$$\end{document}). In doing so, we derive explicit logarithmic asymptotics for the probability that GN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal G }_N$$\end{document} is connected. We present a full analysis of the rate function including its minimizers. From this analysis we deduce a number of limit laws, conditional and unconditional, which provide comprehensive information about all the microscopic and macroscopic components of GN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal G }_N$$\end{document}. In particular, we recover the criterion for the existence of the phase transition given in Bollobás et al. (2007).
引用
收藏
页码:521 / 620
页数:99
相关论文
共 48 条
[1]  
Aldous DJ(1999)Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists Bernoulli 5 3-48
[2]  
Bernardi O(2014)Counting trees using symmetries J. Comb. Theory Ser. A 123 104-122
[3]  
Morales AH(2010)Scaling limits for critical inhomogeneous random graphs with finite third moments Electron. J. Probab. 15 1682-1703
[4]  
Bhamidi S(2012)Novel scaling limits for critical inhomogeneous random graphs Ann. Probab. 40 2299-2361
[5]  
van der Hofstad R(2007)The phase transition in inhomogeneous random graphs Random Struct. Algorithms 31 3-122
[6]  
van Leeuwaarden JSH(2015)Large deviations of empirical neighborhood distribution in sparse random graphs Probab. Theory Relat. Fields 163 149-222
[7]  
Bhamidi S(2021)Limits of sparse configuration models and beyond: graphexes and multigraphexes Ann. Probab. 49 2830-2873
[8]  
van der Hofstad R(2020)Eigenvalues outside the bulk of inhomogeneous Erdős–Rényi random graphs J. Stat. Phys. 181 1746-1780
[9]  
van Leeuwaarden JSH(2016)An introduction to large deviations for random graphs Bull. Am. Math. Soc. 53 617-642
[10]  
Bollobás B(2011)The large deviation principle for the Erdős–Rényi random graph Eur. J. Comb. 32 1000-1017