Refining outcome prediction after traumatic brain injury with machine learning algorithms

被引:5
|
作者
Bark, D. [1 ]
Boman, M. [2 ,3 ]
Depreitere, B. [4 ]
Wright, D. W. [5 ]
Lewen, A. [1 ]
Enblad, P. [1 ]
Hanell, A. [1 ]
Rostami, E. [1 ,6 ]
机构
[1] Uppsala Univ, Dept Med Sci Neurosurg, Uppsala, Sweden
[2] Dept Med Solna, Div Clin Epidemiol, Stockholm, Sweden
[3] Karolinska Inst, Dept Clin Epidemiol, Stockholm, Sweden
[4] Univ Hosp Leuven, Dept Neurosurg, Leuven, Belgium
[5] Emory Univ, Dept Emergency Med, Atlanta, GA USA
[6] Karolinska Inst, Dept Neurosci, Stockholm, Sweden
关键词
CLINICAL-TRIALS; INTERNATIONAL MISSION; EXTERNAL VALIDATION; PROGNOSTIC MODELS; HEAD-INJURY; MORTALITY; PROGESTERONE; IMPACT;
D O I
10.1038/s41598-024-58527-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Outcome after traumatic brain injury (TBI) is typically assessed using the Glasgow outcome scale extended (GOSE) with levels from 1 (death) to 8 (upper good recovery). Outcome prediction has classically been dichotomized into either dead/alive or favorable/unfavorable outcome. Binary outcome prediction models limit the possibility of detecting subtle yet significant improvements. We set out to explore different machine learning methods with the purpose of mapping their predictions to the full 8 grade scale GOSE following TBI. The models were set up using the variables: age, GCS-motor score, pupillary reaction, and Marshall CT score. For model setup and internal validation, a total of 866 patients could be included. For external validation, a cohort of 369 patients were included from Leuven, Belgium, and a cohort of 573 patients from the US multi-center ProTECT III study. Our findings indicate that proportional odds logistic regression (POLR), random forest regression, and a neural network model achieved accuracy values of 0.3-0.35 when applied to internal data, compared to the random baseline which is 0.125 for eight categories. The models demonstrated satisfactory performance during external validation in the data from Leuven, however, their performance were not satisfactory when applied to the ProTECT III dataset.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Machine Learning Algorithms and Quantitative Electroencephalography Predictors for Outcome Prediction in Traumatic Brain Injury: A Systematic Review
    Noor, Nor Safira Elaina Mohd
    Ibrahim, Haidi
    IEEE ACCESS, 2020, 8 : 102075 - 102092
  • [2] Prognosis prediction in traumatic brain injury patients using machine learning algorithms
    Khalili, Hosseinali
    Rismani, Maziyar
    Nematollahi, Mohammad Ali
    Masoudi, Mohammad Sadegh
    Asadollahi, Arefeh
    Taheri, Reza
    Pourmontaseri, Hossein
    Valibeygi, Adib
    Roshanzamir, Mohamad
    Alizadehsani, Roohallah
    Niakan, Amin
    Andishgar, Aref
    Islam, Sheikh Mohammed Shariful
    Acharya, U. Rajendra
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [3] Prognosis prediction in traumatic brain injury patients using machine learning algorithms
    Miri, MirMohammad
    Cone, Jamie
    ARCHIVES OF TRAUMA RESEARCH, 2023, 12 (04) : 217 - 219
  • [4] Prognosis prediction in traumatic brain injury patients using machine learning algorithms
    Hosseinali Khalili
    Maziyar Rismani
    Mohammad Ali Nematollahi
    Mohammad Sadegh Masoudi
    Arefeh Asadollahi
    Reza Taheri
    Hossein Pourmontaseri
    Adib Valibeygi
    Mohamad Roshanzamir
    Roohallah Alizadehsani
    Amin Niakan
    Aref Andishgar
    Sheikh Mohammed Shariful Islam
    U. Rajendra Acharya
    Scientific Reports, 13
  • [5] Prediction of intracranial pressure crises after severe traumatic brain injury using machine learning algorithms
    Petrov, Dmitriy
    Miranda, Stephen P.
    Balu, Ramani
    Wathen, Connor
    Vaz, Alex
    Mohan, Vinodh
    Colon, Christian
    Diaz-Arrastia, Ramon
    JOURNAL OF NEUROSURGERY, 2023, 139 (02) : 528 - 535
  • [6] Traumatic Brain Injury Rehabilitation Outcome Prediction Using Machine Learning Methods
    Balaji, Nitin Nikamanth Appiah
    Beaulieu, Cynthia L.
    Bogner, Jennifer
    Ning, Xia
    ARCHIVES OF REHABILITATION RESEARCH AND CLINICAL TRANSLATION, 2023, 5 (04)
  • [7] Mortality Prediction in Severe Traumatic Brain Injury Using Traditional and Machine Learning Algorithms
    Wu, Xiang
    Sun, Yuyao
    Xu, Xiao W.
    Steyerberg, Ewout
    Helmrich, Isabel R. A. Retel
    Lecky, Fiona
    Guo, Jianying
    Li, Xiang
    Feng, Junfeng
    Mao, Qing
    Xie, Guotong
    Maas, Andrew I. R.
    Gao, Guoyi
    Jiang, Jiyao
    JOURNAL OF NEUROTRAUMA, 2023, 40 (13-14) : 1366 - 1375
  • [8] Prediction of Mortality in Geriatric Traumatic Brain Injury Patients Using Machine Learning Algorithms
    Wang, Ruoran
    Zeng, Xihang
    Long, Yujuan
    Zhang, Jing
    Bo, Hong
    He, Min
    Xu, Jianguo
    BRAIN SCIENCES, 2023, 13 (01)
  • [9] Machine learning-based dynamic mortality prediction after traumatic brain injury
    Rahul Raj
    Teemu Luostarinen
    Eetu Pursiainen
    Jussi P. Posti
    Riikka S. K. Takala
    Stepani Bendel
    Teijo Konttila
    Miikka Korja
    Scientific Reports, 9
  • [10] Machine learning-based dynamic mortality prediction after traumatic brain injury
    Raj, Rahul
    Luostarinen, Teemu
    Pursiainen, Eetu
    Posti, Jussi P.
    Takala, Riikka S. K.
    Bendel, Stepani
    Konttila, Teijo
    Korja, Miikka
    SCIENTIFIC REPORTS, 2019, 9 (1)