Experimental analysis and safety assessment of thermal runaway behavior in lithium iron phosphate batteries under mechanical abuse

被引:3
|
作者
Chai, Zhixiong [1 ]
Li, Junqiu [1 ]
Liu, Ziming [1 ]
Liu, Zhengnan [1 ]
Jin, Xin [2 ]
机构
[1] Beijing Inst Technol, Natl Engn Res Ctr Elect Vehicles, Beijing 100081, Peoples R China
[2] Beijing Inst Space Launch Technol, Beijing 100076, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Mechanical abuse; Internal short circuit; Thermal runaway; Safety assessment; Regression models; ION BATTERY; SHORT-CIRCUITS; MODEL;
D O I
10.1038/s41598-024-58891-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mechanical abuse can lead to internal short circuits and thermal runaway in lithium-ion batteries, causing severe harm. Therefore, this paper systematically investigates the thermal runaway behavior and safety assessment of lithium iron phosphate (LFP) batteries under mechanical abuse through experimental research. Mechanical abuse experiments are conducted under different conditions and battery state of charge (SOC), capturing force, voltage, and temperature responses during failure. Subsequently, characteristic parameters of thermal runaway behavior are extracted. Further, mechanical abuse conditions are quantified, and the relationship between experimental conditions and battery characteristic parameters is analyzed. Finally, regression models for battery safety boundaries and the degree of thermal runaway risk are established. The research results indicate that the extracted characteristic parameters effectively reflect internal short circuit (ISC) and thermal runaway behaviors, and the regression models provide a robust description of the battery's safety boundaries and thermal runaway risk degree. This work sheds light on understanding thermal runaway behavior and safety assessment methods for lithium-ion cells under mechanical abuse.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database
    Feng, Xuning
    Zheng, Siqi
    Ren, Dongsheng
    He, Xiangming
    Wang, Li
    Cui, Hao
    Liu, Xiang
    Jin, Changyong
    Zhang, Fangshu
    Xu, Chengshan
    Hsu, Hungjen
    Gao, Shang
    Chen, Tianyu
    Li, Yalun
    Wang, Tianze
    Wang, Hao
    Li, Maogang
    Ouyang, Minggao
    APPLIED ENERGY, 2019, 246 : 53 - 64
  • [32] Experimental Investigation on Thermal Runaway of Lithium-Ion Batteries under Low Pressure and Low Temperature
    Meng, Di
    Weng, Jingwen
    Wang, Jian
    BATTERIES-BASEL, 2024, 10 (07):
  • [33] Thermal runaway behavior of lithium-ion batteries in different charging states under low pressure
    Xie, Song
    Sun, Jian
    Chen, Xiantao
    He, Yuanhua
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (04) : 5795 - 5805
  • [34] Research Progress of Thermal Runaway and Safety for Lithium Metal Batteries
    Zhang, Shichao
    Shen, Zeyu
    Lu, Yingying
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (01) : 1 - 18
  • [35] Investigate the changes of aged lithium iron phosphate batteries from a mechanical perspective
    Wang, Huacui
    Wu, Yaobo
    Cao, Yangzheng
    Liu, Mingtao
    Liu, Xin
    Liu, Yue
    Liu, Binghe
    ISCIENCE, 2024, 27 (12)
  • [36] Detailed modeling investigation of thermal runaway pathways of a lithium iron phosphate battery
    Kwak, Eunji
    Kim, Jun-hyeong
    Hong, Sung Ho
    Oh, Ki-Yong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (02) : 1146 - 1167
  • [37] Experimental investigation of thermal runaway in 40Ah prismatic lithium batteries at different SOC
    Wei, Ningning
    Li, Minghai
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2024, 96
  • [38] Review of Flame Behavior and Its Suppression during Thermal Runaway in Lithium-Ion Batteries
    Mao, Yikai
    Chen, Yin
    Chen, Mingyi
    BATTERIES-BASEL, 2024, 10 (09):
  • [39] Comparative Study on Thermal Runaway Characteristics of Lithium Iron Phosphate Battery Modules Under Different Overcharge Conditions
    Sun, Lei
    Wei, Chao
    Guo, Dongliang
    Liu, Jianjun
    Zhao, Zhixing
    Zheng, Zhikun
    Jin, Yang
    FIRE TECHNOLOGY, 2020, 56 (04) : 1555 - 1574
  • [40] Investigating the Thermal Runaway Behavior and Early Warning Characteristics of Lithium-Ion Batteries by Simulation
    Wang, Xiaoyong
    Mi, Yuanze
    Zhao, Zihao
    Cai, Jiawen
    Yang, Donghui
    Tu, Fangfang
    Jiang, Yuanyang
    Xiang, Jiayuan
    Mi, Shengrun
    Wang, Ruobin
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (12) : 7367 - 7379