A Remark on the Laplace Transform

被引:0
作者
W. Chelkh
I. Ly
N. Tarkhanov
机构
[1] Institute of Mathematics,University of Potsdam
[2] Université Ouaga 1,Départment de Mathématique
来源
Siberian Mathematical Journal | 2020年 / 61卷
关键词
Fourier–Laplace transform; distributions with one-sided support; holomorphic function; analytic functional; 517.955;
D O I
暂无
中图分类号
学科分类号
摘要
The study of the Cauchy problem for solutions of the heat equation in a cylindrical domain with data on the lateral surface by the Fourier method raises the problem of calculating the inverse Laplace transform of the entire function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \cos\sqrt{z} $\end{document}. This problem has no solution in the standard theory of the Laplace transform. We give an explicit formula for the inverse Laplace transform of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \cos\sqrt{z} $\end{document} using the theory of analytic functionals. This solution suits well to efficiently develop the regularization of solutions to Cauchy problems for parabolic equations with data on noncharacteristic surfaces.
引用
收藏
页码:755 / 762
页数:7
相关论文
共 20 条
  • [1] Petrowsky IG(1938)On the Cauchy problem for systems of linear partial differential equations in the region of nonanalytic functions Bull. Moscow State Univ., Math. Mech. 1 1-72
  • [2] Schwartz L(1952)Transformation de Laplace des distributions Comm. Sém. Math. Univ. Lund Tome suppl. 196-206
  • [3] Gelfand IM(1953)The Fourier transform of rapidly increasing functions and uniqueness of the Cauchy problem Uspekhi Mat. Nauk 8 3-54
  • [4] Shilov GE(1956)Analytic functions and the Fourier transform of distributions, I Ann. Math. 63 129-159
  • [5] Ehrenpreis L(1983)On Fourier transforms of distributions with one-sided support Proc. Amer. Math. Soc. 88 237-243
  • [6] Shambayati R(2000)Generalized Paley–Wiener theorem and generalized convolution associated with the differential operator Integral Transforms Spec. Funct. 9 245-256
  • [7] Zielezny Z(2017) in the complex domain Math. Scand. 120 225-242
  • [8] Cheikh YB(1958)A note on holomorphic functions and the Fourier–Laplace transform Math. Ann. 136 58-96
  • [9] Carlsson M(1960)Les fonctions analytiques comme ultra-distributions dans le calcul opérationnel Bull. Kyushu Inst. Tech. Math. Nat. Sci. 6 1-60
  • [10] Wittsten J(1996)On spaces of distributions of exponential growth Proc. Amer. Math. Soc. 124 2101-2108